q

’g\
¥
w

RTS8 ('\ o '___ﬁ__

Q) ~\|

Build A Microcomputer

)
Chapter VI
Interrupt
Advanced

Micro Devices

O

@

Copyright © 1979 by Advanced Micro Devices, Inc.

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely
embodied in an Advanced Micro Devices’ product.

AM-PUB073-6 .

U INTRODUCTION

o

A digital computer can be viewed as a finite state machine that
moves from state to state via the execution of a program. Inter-
rupt mechanisms provide a well-defined way of altering the flow
of states in response to outside asynchronous events (inter-
rupts). There is a wide variety of ways of handling interrupts
depending upon the system requirements. The choice of a par-
ticular interrupt mechanism can have a large impact on the
through-put and flexibility of a system. Therefore, time should be
spent carefully defining the interrupt mechanism of a new com-
puter design.

POLLING VS. NON-POLLING

One of the simplest ways to handle asynchronous events is the
polling method. With each possible event there is an associated
flag that can be accessed by the program. The processor then
interrogates each flag in order to determine if service is required.
This method trades simple hardware for software. This not only
uses memory space but also uses time for polling the flags when
no service is required. The polling method has low system
through-put, high real time overhead and slow response time.

In non-polling systems, the asynchronous event generates an
interrupt request signal which is passed to the processor. The
processor in turn suspends the execution of the current process
and starts execution of an interrupt service routine. When the
interrupt routine is completed, the processor resumes execution
of the suspended process. This system is called an interrupt
driven system because it executes interrupt service routines that
are initiated by interrupt requests.

Although the non-polling method requires more hardware, it has
many advantages. Because the execution of interrupt service
routines is transparent to the current process, less thought and
time is required of the programmer of the current process. The
response time is faster because no time is spent interrogating the
other non-active interrupts, which in turn increases the system
throughput. There is less real time overhead and less memory
space required because only the service routine exists in memory
and no polling routine is required.

MACHINE VS. MICROPROGRAM LEVEL INTERRUPTS

There are two levels on which interrupts may be handled. The
first and most common is the machine level interrupt. In this
method possible interrupt requests are checked for during the
machine instruction fetch cycle. This guarantees that an inter-
rupt can only happen when a machine instruction is complete
and before a new instruction starts.

The second level of handling interrupts is on the microprogram
level. In the machine level interrupt system, the microprogram
has complete control of when to recognize an interrupt but in the
microprogram level system the microprogram can be interrupted
at any time. This method has a smaller response time for ser-
vicing interrupt requests but requires that restrictions may be
placed on the microprogram and the interrupt mechanism.
These restrictions come from setting aside space on the finite
microprogram stack in the sequencer for possible interrupt re-
quests. Special consideration may also have to be given to loop
counters.

TYPES OF INTERRUPTS

There are basically four types of interrupts based on the re-
lationship of the source of the interrupt to the processor: within
the processor, within the system, between software, and be-
tween processors. A multiprocessor has to be able to handle all
four levels of interrupts. Therefore, the interrupt structure that is
picked will have these design tradeoffs to consider.

A. Intraprocessor interrupts are those asynchronous events
that happen within the processor during the execution of a
machine instruction. This group includes such things as zero
divide, overflow, accessing restricted memory, execution of
a privileged instruction, machine failure, etc.

B. Intrasystem interrupts are interrupts created by system
peripherals such as disks, CRT's and printers that require
service.

C. Executive interrupts are those interrupts caused by the cur-
rent program that is executing. This provides a way for the
current program to make a request of the executive (operat-
ing system) program. These requests might include such
things as starting new tasks, allocating hardware resources
(disks, line printers), communication with other tasks, etc. A
good example would be the supervisor call (SVC) in the IBM
360/370 computers.

D. Interprocessor interrupts include those interrupts between
two intelligent processors. For example, this class of inter-
rupts would be used to initiate data and status transfer be-
tween a local processor and a processor at a remote site.

SEQUENCE OF EVENTS FOR INTERRUPT HANDLING

When an interrupt occurs there is a sequence of six events that
happen. These events, which can be implemented in microcode
or machine code, integrated together with the hardware com-
prise the interrupt mechanism. The sequence of events de-
scribes the steps that occur to provide for a smooth transfer from
the current process environment to an interrupt servicing envi-
ronment and back again. The sequence ensures that the proces-
sor status will be the same immediately after an interrupt is
serviced as immediately before the interrupt occurred. The
events listed in the next few paragraphs may differ in order or
overlap depending upon the machine design and application.

Interrupt Recognition

This step consists of the recognition of an interrupt request by
the processor via an interrupt request line. In this step the pro-
cessor can determine which device made the request. The
method that is used to determine which device to service is
directly related to the interrupt structure of the machine. The
different types of interrupt structures will be discussed in more
detail below.

Save Status

The goal of this step is to make the interrupt sequence trans-
parent to the interrupted process. Therefore, the processor saves
a minimum set of flags and registers that may be changed by the
interrupt service routine, so that after the service routine is
finished they may be restored.

The minimum set of flags and registers would be those which
will be destroyed in the transfer of control from the current pro-
cess to the interrupt service routine. It is then the responsibility
of the service routine to save any other registers which it might
change. The minimum set of flags and registers might include
the Program Counter, Overflow Flag, Sign Flag, Interrupt Mask,
etc. The minimum set also includes any register or flag that
needs to be saved that the interrupt service routine cannot
access.

Interrupt Masking

This step can overlap some of the other steps. For the first few
steps of the sequence all interrupts are masked out so that no
interrupt may occur before the processor status is saved. The
mask is then usually set to accept interrupts of higher priority.

Some machines allow the service routine to selectively enable
or disable interrupts also. There may be different variations to
this step depending upon the application.

Interrupt Acknowledge

At some point the processor must acknowledge the interrupt
being serviced so that the interrupting device knows that it is free
to continue its task. The processor can acknowledge several
different ways. One of the ways is to have a line devoted to
interrupt acknowledge. Another method relies upon the inter-
rupting device recognizing an acknowledge when the cause of
the interrupt is serviced.

Some processor designs also use this signal as a request for the
interrupting device to send an I.D. down the data bus. This as-
pect will be discussed in more detail below.

Interrupt Service Routine

At this point the processor can call the interrupt service routine.
The address of the routine can be obtained several ways de-
pending upon the system architecture. The most trivial is when
there is only one routine which polls each device to find out
which one interrupted. Some designs require that the interrupt-
ing device put an address on the data bus so that the processor
can store it in its program counter and branch to it. Other de-
signs use an |.D. number derived from the priority of the interrupt
and put it through a mapping PROM or look-up table in memory
in order to obtain the address of the service routine.

Restore and Return

After the interrupt service routine has returned via some varia-
tion of an Interrupt Return instruction, the processor should re-

store all the registers and flags that were saved previous to the \J

interrupt routine. If this is done correctly, the processor should
have the same status as before the interrupt was recognized.

INTERRUPT STRUCTURES

There are several interrupt structures that can be implemented. |
As usual there is a trade-off between hardware and software (or
firmware). Listed below are some of the more common struc-
tures used. The particular structures vary in the way that the
processor determines which device made the interrupt request.

Single Request, Multiple Poll

In this structure there is one request line which is shared among
all interrupting devices. When the processor recognizes an inter-
rupt request it polls all the devices to find the interrupting device
(see Figure 1). Priority is introduced via the order in which the
devices are polled. This scheme also allows dynamic realloca-
tion of priority.

Single Request, Daisy Chain Acknowledge

In this structure there is one request line which is shared. When
the processor receives an interrupt it sends out a signal
acknowledging the interrupt. The acknowledge signal is passed
from /O device to I/O device until the interrupting device re-
ceives the signal. At this point the interrupting device identifies
itself by putting an 1.D. number on the data bus (see Figure 2).
This structure requires less software, but has a static priority
associated with each interrupting device. There is also a time
delay associated with daisy chain acknowledge structure be-
cause in each device INTA signal has to pass through several

d

ADDRESS AND DATA

CPU

I I %

CONTROL

% I

INTERRUPT

D

REQUEST

|

| T

DEVICE
#1

DEVICE
#2

DEVICE
#3

Figure 1. Single Request, Multiple Poll.

DATA

CPU

1 |

CONTROL

ANVAN

INTERRUPT
IRG

VN

REQUEST

s | l

DEVICE
#1

DEVICE

w2

DEVICE
#3

INTERRUPT
ACKNOWLEDGE

Figure 2. Single Request, Daisy Chain Acknowledge.

2

o

U

O

Multiple Request

This structure features one line per priority level (see Figure 3).
The multiple line structure gives the fastest response time since
the interrupting device can be identified immediately. It also re-

| sults in simpler interfaces in the peripheral units, in general, a

single interrupt request flip-flop. This structure allows for the
possibility of having a mask bit associated with each priority
level (device). The trade-off of this circuit is a wider bus and a
limit of one peripheral per priority level.

Multiple Request, Daisy Chain Acknowledge

This structure combines the Single Request/Daisy Chain
Acknowledge with the Multiple Request structure (see Figure 4).
For each interrupt request line there is an interrupt acknowledge
line which is connected to a string of devices in a daisy chain
fashion. When the appropriate device receives the interrupt
acknowledge, it puts an I.D. number on the data bus.

The advantage of this structure is that a lot (more than available
interrupt levels) of devices may be handled by breaking them up

into short daisy chains. This gives a shorter access time than a
pure daisy chain with less hardware than an interrupt request
line per device. This advantage is that each device must be
intelligent to pass on the acknowledge signal which requires
more hardware in each device.

PRIORITY SCHEMES

When handling asynchronous requests one must assume that
sometimes two or more requests can happen simultaneously. In
order to handle this situation, there must be some sort of priority
scheme implemented to pick which request is serviced first.

The two most common priority schemes are the static and the
rotating structures. In the static structure, all the interrupt levels
are ordered from the lowest priority to the highest priority. This
can be fixed in software or hardware and is usually permanent.

In the rotating structure the possible interrupt requests are ar-
ranged in a circle. There is a pointer which points to the lowest
priority interrupt. The priority of each interrupt increases as one
fravels around the circle, with the highest priority interrupt being

INTERRUPT
1"d CONTROLLER
cPU Ia
INTERRUPT h
VECTOR I
2
DEVICE DEVICE DEVICE
#1 #2 #3

Figure 3. Multiple Request.

< DATA/CONTROL >
cPU i ' T
IRQ lo
INTERRUP
INTA N Ao DEVICE DEVICE DEVICE LEVEL ueT
Iy #1 #2 #3
W — —T I — #1
2 INTA;
Iz
INTA; —
INTERRUPT Y l Y
CONTROLLER
INTERRUFT
DEVICE DEVICE DEVICE | pver
#4 #5 #6 #2
DEVICE DEVICE pevice | 'RRUPT
#T7 #8 #9
—— R — ——— #3

Figure 4. Multiple Requests, Daisy Chain Acknowledge.

3

adjacent to the lowest priority interrupt. The lowest priority inter-
rupt pointer is changed to point at the interrupt that was just
serviced. This structure is advantageous when all interrupts
have similar priority and service bandwidth requirements.

NESTING

Nesting allows only higher priority interrupts to interrupt a pro-
cessing interrupt service routine. Nesting requires fencing off
equal and lower level interrupts. Fencing requires that the inter-
rupt structure hold the value of the highest priority interrupt being
serviced. This can be implemented with a Status Register that
holds the value as a binary encoded number or in other systems
as an In-Service Register with a different bit associated with
each interrupt.

Whether nesting is performed in microcode or not, all computers
must have machine instructions to enable and disable interrupts

[—~——(cLOCK

CP

INTERRUPT

INTERRUPT 0
REQUEST 0

CLR CLR

? ? CLR

INTERRUPT O

cp

ety >—=ce @ D Q INTERRUPT 1
cLR CLR
T 9 cLR

INTERRUPT 1

CP

INTERRUPT
REQUEST 2

INTERRUPT 2
CLR CLR

? ? CLR

INTERRUPT 2

CP

INTERRUPT S o cp g D [} INTERRUPT 3
REQUEST 3 oA oLR

? ? CLR

™ INTERRUPT 3

Figure 5.

and set and clear mask bits. With these instructions, interrupt
handlers can be written to accomplish nesting of interrupts al-
though less efficiently than when done with microcode and
hardware. In low-end computers, the interrupt structure only
prioritizes interrupts leaving nesting to the software interrupt
handlers.

A UNIVERSAL HARDWARE INTERRUPT STRUCTURE

While designing a hardware interrupt structure, the designer
should consider the specific functions that are to be achieved.
This provides for system optimization in not only hardware but
also software. In the following paragraphs is a step by step
development of a general purpose interrupt structure as related
to the design concepts involved.

Multiple Interrupt Request Handling

Since interrupt requests are generated from a number of
sources, the interrupt structures ability to handle interrupt re-
quests from several sources is important.

As implemented in Figure 5, the register configuration allows the
hardware to handle interrupt requests from several sources. The
first column of registers catches the asynchronous interrupt re-
quest. The second column of registers synchronizes the re-
quests with respect to the system. After the interrupt is serviced,
one of the CLR lines can be used to selectively clear the inter-
rupt request.

Interrupt Request Prioritization

Since the processor can service only one interrupt request at a
time, the interrupt structure should have the ability to prioritize
the requests and determine which has the highest priority. As
shown in Figure 6, a priority encoder can be put on the output of
the interrupt storage registers. The priority encoder will identify
the highest interrupt request as a binary encoded number.

Dynamic Interrupt Request Masking

The ability to selectively inhibit or “mask” individual interrupt
requests under program control is desirable. For example at
times it may be important to inhibit all interrupts except Power
Failure. As shown in Figure 7 this is realized by ANDing the
output of a mask register with the output of the interrupt storage
registers. Therefore, the mask register can be used to select
which interrupt requests will pass through to the rest of the
hardware.

Interrupt Request Clearing

Flexibility in the method of clearing the interrupt allows different
modes of interrupt system operation. Of particular value are the
abilities to clear the interrupt currently being serviced or clear all
interrupts.

PULSE
CATCHER

=]

D D
78

INTERRUPT =

REQUESTS ‘B

(> cp

INTERRUPT
REQUEST
REGISTER

>cP

PRIORITY
ENCODER
ENCODED

Q ﬁg——- INTERRUPT

VECTOR

CLOCK

Figure 6.

9

o

CONTROL
48 CLEAR /
| % CONTROL 73
CLR
5 ;8 INTERRUPT /8
STORAGE
VECTOR
HOLD
8| PRIORITY 3 l INTERRUPT
i ENCODER ’ il VECTOR
5 ;8 MASK 8
REGISTER [O7
‘ o, 1
=10 # INTERRUPT REQUEST
Figure 7.

This is implemented in Figure 8 by use of the Vector Hold reg-
ister on the output of the Priority Encoder. This register holds the
latest interrupt request that was recognized. Before another
interrupt request is recognized, the output of the Vector Hold
register can be fed through some clear control logic to selec-
tively clear the old interrupt.

Interrupt Request Priority Threshold

The ability to establish a priority threshold is valuable. In this
type of operation, only those interrupt requests which have
higher priority than a specified threshold priority are accepted.
The threshold priority can be defined by microprogram or can be
automatically established by hardware at the interrupt currently
being serviced plus one. This automatic threshold prevents mul-
tiple interrupts from the same source.

This feature is implemented in Figure 8 using an incrementer
and status register which is compared with the current request.
Each time an interrupt is recognized, the status register is up-
dated with one plus the current level.

Interrupt Service Routine “Nesting”

This feature allows an interrupt service routine for a given pri-
ority request to be interrupted in turn by a higher priority interrupt
request. This can be achieved by saving the status register be-
fore each interrupt is serviced and restoring it afterwards.

Microprogrammability and Hardware Modularity

These last two design concepts bring us to the Vectored Priority
Interrupt controller, the Am2914. The Am2914 is a modular inter-
rupt system block which is beneficial in two ways. First,

CLEAR
i CONTROL —l
e VECTOR
HOLD
REGISTER
>___/__8__ INTERRUPT
STORAGE
8
j } PRIORITY £ 3 h; 4 3
ECoRee e INTERRUPT
VECTOR
{s {a
>_._.,4_‘3.. MASK
REGISTER
Lo— s
INTERRUPT
. REQUEST
INCREMENTER COMPARE |___la<=B
]
STATUS
REGISTER

Figure 8.

2 D !
DJ#Q ! CLEAR ENABLE
LEA ABL!
mranaup:'i D.._B,A.D INTR | B of INTR CLEAR FLIP-FLOP
INPUTS LATCHES REG CONTROL a
ol ;
38T IBIT
A-J‘ VECTOR HOLD
REGISTER
~
BINPUT 3 i
M; B X PRIORITY h— 2 3 VECTOR
M — BUS MHS)(ER:I(IIS\‘ER o ENCODER 1 v T D QUTPUT
38T vas INTERRUPT
COMPARATOR INTR 2:’%”537 0—® REQUEST
GROUP ENABLE
5
tosie | Gidaie
INTERRUPT
DETECT INCREMENTER ? BIPFLE
DISABLE
INSTRUCTION Dﬁ i;e:fvtm
ENABLE
3-5T SEND
i 4 "s'“'c“? N . INDERSE? STATUS STATUS
INSTRUCTION >7; INSTRUCTION .
INPUTS DECODE * . o;‘l'_?;‘_:fg;" o— > DvenrLow
GROUF
5 ¥ ENABLE
o ~ staTuS STATUS ReLED Ghour
CLOCK D |2 BL REGISTER FLIP-FLOP SIGNAL
GROUP ADVANCE
RECEIVE
t FIN 5YMBOLS
[—— INPUT FIN gﬁ?rgSSLLECTDR
—™> outPuTein
BIDIRECTIONAL THREE-STATE
@ (i) onIPu‘r A
Figure 9. Am2914 Block Diagram.
hardware modularity provides expansion capability. Additional
modules may be added as the need to service additional re-
quests arises. Secondly, hardware modularity provides a struc- l l
tural regularity which simplifies the system structure and also i =
reduces the number of hardware part numbers. —q| #7 ADVANCE DISABLE
J—— SEND S;GEEL lo—e
. . : . —=0] Ps
The Am2914 is microprogrammable, which permits the con- _..g Pa | nTERRUPT y
struction of a general purpose or “universal’ interrupt structure =9 ﬁ: HES VECTOR \f
which can be microprogrammed to meet a specific application’s L our)L
£ - £ . Vo =
requirement. The universality of the structure allows standardi- —fo ¢
zation of the hardware and amortization of the hardware de- Pl STATUS |
velopment costs across a much broader user base. The end ; SUSHELSHE
result is a flexible, low cost interrupt structure as shown in —-— M,; 5y
Figure 9. | M5 Amza14 f
o STATUS) 51 |a—e
——| Mg -
.M 50 fr—e—
PROGRAMMING THE Am2914 - !
—-—| Mgy
The Am2814 is controlled by a four-bit microinstruction field lg-15. NSTRUCTION GROUP
The microinstruction is executed if IE (Instruction Enable) is ENABLE EHABEE
LOW and is ignored if IE is HIGH, allowing the four | bits to be s INTERRURT
shared with other functions. Sixteen different microinstructions | jmsrrucTion AEQUEST [
are executed. Figure 11 shows the microinstructions and the — "
. " . GROUP
microinstruction codes. — = CLOCK ADVANCE RIFFLE PARALLEL
RECEIVE DISABLE DISABLE
In this microinstruction set, the Master Clear microinstruction is T T L
selected as binary zero so that during a power-up sequence, the
microinstruction register in the microprogram control unit of the

central processor can be cleared to all zeros. Thus, on the next
clock cycle, the Am2914 will execute the Master Clear function.

Figure 10. Am2914 Logic Symbol.

€

€

<

@ €

®

MICROINSTRUCTION
MICROINSTRUCTION CODE
DESCRIPTION Ialal1lg
MASTER CLEAR 0000
CLEAR ALL INTERRUPTS 0001
CLEAR INTERRUPTS FROM
M-BUS 0010
CLEAR INTERRUPTS FROM MASK
REGISTER 0011
CLEAR INTERRUPT, LAST
VECTOR READ 0100
READ VECTOR 0101
READ STATUS REGISTER 0110
READ MASK REGISTER 0111
SET MASK REGISTER 1000
LOAD STATUS REGISTER 1001
BIT CLEAR MASK REGISTER 1010
BIT SET MASK REGISTER 1011
CLEAR MASK REGISTER 1100
DISABLE INTERRUPT REQUEST 1101
LOAD MASK REGISTER 1110
ENABLE INTERRUPT REQUEST 1111

Figure 11. Am2914 Microinstruction Set.

This includes clearing the Interrupt Latches and Register as well
as the Mask Register and Status Register. The LGE flip-flop of
the least significant group is set LOW because the Group Ad-
vance Receive input is tied LOW. All other Group Advance Re-
ceive inputs are tied to Group Advance Send outputs and these
are forced HIGH during this instruction. This clear instruction
also sets the Interrupt Request Enable flip-flop so that a fully
interrupt driven system can be easily initiated from any interrupt.

The Clear All Interrupts microinstruction clears the Interrupt
Latches and Register.

The Clear Interrupts from M-Bus microinstruction clears those
Interrupt Latches and Register bits which have corresponding
M-Bus bits set equal to one.

The Clear Interrupts from Mask Register microinstruction clears
those Interrupt Latches and Register bits which have cor-
responding Mask Register bits set equal to one. The M-Bus is
used by the Am2914 during the execution of this microinstruction
and must be floating.

The Clear Interrupt, Last Vector Read microinstruction clears
the Interrupt Latch and Register bit associated with the last
vector read.

The Read Vector microinstruction is used to read the vector
value of the highest priority request causing the interrupt. The
vector outputs are three-state drivers that are enabled onto the
is instruction. This microinstruction also automatically loads the
value “vector plus one” into the Status Register. In addition, this
instruction sets the Vector Clear Enable flip-flop and loads the
current vector value into the Vector Hold Register so that this
value can be used by the Clear Interrupt, Last Vector Read
microinstruction. This allows the user to read the vector as-
sociated with the interrupt, and at some later time clear the
Interrupt Latch and Register bit associated with the vector read.

During the Read Status Register microinstruction, the Status
Register outputs are enabled onto the Status Bus (Sq¢-Ss). The
Status Bus is a three-bit, bi-directional, three-state bus.

The Read Mask Register microinstruction enables the Mask
Register outputs onto the bi-directional, three-state M-Bus.

The Set Mask Register microinstruction sets all the bits in
the Mask Register to one. This results in all interrupts being
inhibited.

The Load Status Register microinstruction loads S-Bus data into
the Status Register and also loads the LGE flip-flop from the
Group Enable input.

The Bit Clear Mask Register microinstruction may be used to
selectively clear individual Mask Register bits. This micro-
instruction clears those Mask Register bits which have cor-
responding M-Bus bits equal to one. Mask Register bits with
corresponding M-Bus bits equal to zero are not affected.

The Bit Set Mask Register microinstruction sets those Mask
Register bits which have corresponding M-Bus bits equal to one.
Other Mask Register bits are not affected.

The entire Mask Register is cleared by the Clear Mask Register
microinstruction. This enables all interrupts subject to the Inter-
rupt Enable flip-flop and the Status Register.

All Interrupt Requests may be disabled by execution of the Dis-
able Interrupt Request microinstruction. This microinstruction
resets an Interrupt Request Enable flip-flop on the chip.

The Load Mask Register microinstruction loads data from the
three-state, bi-directional M-Bus into the Mask Register.

The Enable Interrupt Request microinstruction sets the Interrupt
Enable flip-flop. Thus, Interrupt Requests are enabled subject to
the contents of the Mask and Status Registers.

Am2914 BLOCK DIAGRAM DESCRIPTION

The Am2914 block diagram is shown in Figure 9. The Micro-
instruction Decode circuitry decodes the Interrupt Microinstruc-
tions and generates required control signals for the chip.

The Interrupt Register holds the Interrupt Inputs and is an
eight-bit, edge-triggered register which is set on the rising edge
of the CP Clock signal if the Interrupt Input is LOW.

The Interrupt latches are set/reset latches. When the Latch
Bypass signal is LOW, the latches are enabled and act as nega-
tive pulse catchers on the inputs to the Interrupt Register. When
the Latch Bypass signal is HIGH, the Interrupt latches are
transparent.

The Mask Register holds the eight mask bits associated with the
eight interrupt levels. The register may be loaded from or read to
the M-Bus. Also, the entire register or individual mask bits may
be set or cleared.

The Interrupt Detect circuitry detects the presence of any un-
masked Interrupt Input. The eight-input Priority Encoder deter-
mines the highest priority, non-masked Interrupt Input and forms
a binary coded interrupt vector. Following a Vector Read, the
three-bit Vector Hold Register holds the binary coded inter-
rupt vector. This stored vector can be used later for clearing
interrupts.

The three-bit Status Register holds the status bits and may be
loaded from or read to the S-Bus. During a Vector Read, the
Incrementer increments the interrupt vector by one, and the re-
sult is clocked into the Status Register. Thus, the Status Reg-
ister points to a level one greater than the vector just read.

The three-bit Comparator compares the Interrupt Vector with the
contents of the Status Register and indicates if the Interrupt
Vector is greater than or equal to the contents of the Status
Register.

The Lowest Group Enabled Flip-Flop is used when a number of
Am2914's are cascaded. In a cascaded system, only one Low-
est Group Enabled Flip-Flop is LOW at a time. It indicates the
eight interrupt group, which contains the lowest priority interrupt
level which will be accepted and is used to form the higher order
status bits.

The Interrupt Request and Group Enable logic contain various
gating to generate the Interrupt Request, Parallel Disable, Rip-
ple Disable, and Group Advance Send signals.

The Status Overflow signal is used to disable all interrupts. It
indicates the highest priority interrupt vector has been read and
the Status Register has overflowed.

The Clear Control logic generates the eight individual clear sig-
nals for the bits in the Interrupt Latches and Register. The Vector
Clear Enable Flip-Flop indicates if the last vector read was from
this chip. When it is set it enables the Clear Control Logic.

The CP clock signal is used to clock the Interrupt Register, Mask
Register, Status Register, Vector Hold Register, and the Lowest
Group Enabled, Vector Clear Enable and Status Overflow Flip-
Flops, all on the clock LOW-to-HIGH transition.

CASCADING THE Am2914

A number of input/output signals are provided for cascading the
Am2914 Vectored Priority Interrupt Encoder. A definition of
these I/O signals and their required connections follows:

Group Signal (GS) — This signal is the output of the Lowest
Group Enabled flip-flop and during a Read Status micro-
instruction is used to generate the high order bits of the Status
word.

Group Enable (GE) — This signal is one of the inputs to the
Lowest Group Enable flip-flop and is used to load the flip-flop
during the Load Status microinstruction.

Group Advance Send (GAS) — During a Read Vector micro-
instruction, this output signal is LOW when the highest priority
vector (vector seven) of the group is being read. In a cascaded
system Group Advance Send must be tied to the Group Ad-
vance Receive input of the next higher group in order to transfer
status information.

Group Advance Receive (G_Aﬁ) — During a Master Clear or
Read Vector microinstruction, this input signal is used with other
internal signals to load the Lowest Group Enabled flip-flop. The
Group Advance Receive input of the lowest priority group must
be tied to ground.

Status Overflow (SV) — This output signal becomes LOW after
the highest priority vector (vector seven) of the group has been
read and indicates the Status Register has overflowed. It stays
LOW until a Master Clear or Load Status microinstruction is
executed. The Status Overflow output of the highest priority
group should be connected to the Interrupt Disable input of the
same group and serves to disable all interrupts until new status
is loaded or the system is master cleared. The Status Overflow
outputs of lower priority groups should be left open (see Fig-
ure 14).

Interrupt Disable (ID) — When LOW, this input signal inhibits the
Interrupt Request output from the chip and also generates a
Ripple Disable output.

Ripple Disable (RD) — This output signal is used only in the
Ripple Cascade Mode (see below). The Ripple Disable output is
LOW when the Interrupt Disable input is LOW, the Lowest
Group Enabled flip-flop is LOW, or an Interrupt Request is gen-
erated in the group. In the ripple cascade mode, the Ripple
Disable output is tied to the Interrupt Disable input of the next
lower priority group (see Figure 13).

Parallel Disable (PD) — This output is used only in the parallel
cascade mode (see below). It is LOW when the Lowest Group
Enabled flip-flop is LOW or an Interrupt Request is generated in
the group. It is not affected by the Interrupt Disable input.

CASCADING CONFIGURATIONS

A single Am2914 chip may be used to prioritize and encode up to
eight interrupt inputs. Figure 12 shows how the above cascade
lines should be connected in such a single chip system.

—

INTERRUPT
DISABLE

+5.0V STATUS |5 |

OVERFLOW

IR Am2914 Po.y f——

GROUP

ENABLE

GROUP
ADVANCE
RECEIVE

i

Figure 12. Cascade Lines Connection for
Single Chip System.

The Group Advance Receive and Group Enable inputs should
be connected to ground so that the Lowest Group Enabled flip-
flop is forced LOW during a Master Clear or Load Status micro-
instruction. Status Overflow should be connected to Interrupt
Disable in order to disable interrupts when vector seven is read.
The Group Advance Send, Ripple Disable, Group Signal and
Parallel Disable pins should be left open.

The Am2914 may be cascaded in either a Ripple Cascade Mode
or a Parallel Cascade Mode. In the Ripple Cascade Mode, the
Interrupt Disable signal, which disables lower priority interrupts,
is allowed to ripple through lower priority groups. Figures 13, 16,
and 17 show the cascade connections required for a ripple cas-
cade 32 input interrupt system.

In the parallel cascade mode, a parallel lookahead scheme is
employed using the high-speed Am2902 Lookahead Carry
Generator. Figures 14, 15, and 17 show the cascade’connections
required for a parallel cascade 32-input interrupt system. For this
application, the Am2902 is used as a lookahead interrupt disable

o

€ ¢

STATUS OVERFLOW
O INTERRUPT INTERRUPT 0—
REQUEST DISABLE | IRQ 2431
Am2914 Por ..718_
RIPPLE |,
cLock DISABLE
INT
o IR |
OIS 1™ |ra 16-23
Am2914 Po.7
+5.0V —cp D
* o IR g‘g o
INTERRUPT IRQ 8-15
REQUEST Am2914 Po.r
OUTPUT 8
—— CP RD fo—
INT
O IR o—
s IRQ 0-7
Am2914 Po.7 5
cLock
INPUT cp RD [O—

Figure 13. Interrupt Disable Connections for
Ripple Cascade Mode.

generator. A Parallel Disable output from any group results in the
disabling of all lower priority groups in parallel. Figure 15 shows
the Am2902 logic diagram and equations.

In Figures 16 and 17 the Am2913 Priority Interrupt Expander is
shown forming the high order bits of the vector and status, re-
spectively. The Am2913 is an eight-line to three-line priority en-
coder with three-state outputs which are enabled by the five
output control signals G1, G2, G3, G4, and G5. In Figure 16, the
Am2913 is connected so that its outputs are enabled during a
Read Vector instruction, and in Figure 17 the Am2913 is con-
nected to microinstruction bits so that its outputs are enabled
during a Read Status Instruction. The Am2913 logic diagram and
truth table are shown in Figure 18.

The Am25LS138 three-line to eight-line Decoder also is shown in
Figure 17. It is used to decode the three high order status bits
during a Load Status instruction. The Am25LS138 logic diagram
and truth table are shown in Figure 19.

Am2914 IN THE Am2900 SYSTEM

The block diagram of Figure 20 shows a typical 16-bit mini-
computer architecture. The Am2914 is the heart of the Interrupt
Control Unit as shown at the bottom of the block diagram. It
receives its microinstructions from the Computer Control Unit.
The mask, Status and Interrupt vector information are passed on
the data bus. The interrupt request line from the Am2914 input
into the next microprogram Address Control unit where it can be
tested to determine if an interrupt request has been made.

Figures 21 and 22 show the detailed hardware design of two
example interrupt control units (ICU's) for an Am2900 Computer

STATUS OVERFLOW
——] INTERRUPT INTERRUPT [0
REQUEST DISABLE
Am29T4 o ARALLEL
CLOCK DISABLE
IRPT 24-31
- IR g‘g fo—q
o +5.0V
Am2814 c,
——{cp PD v
1]
e
Gp
Fl‘
8 G
INT g ™
R o A
A IR DIS Ny % e,
Am2914 P, <
Gy
+5.0V ——| CP PD —{ Cnsy
Py
4700
INTERRUPT -
REQUEST —# of IR o o—
QUTPUT Am2914
CLOCK
INPUT cr o
C-7

Figure 14. Interrupt Disable Connections for Parallel Cascade Mode.

9

Gy Py

Gy Py

—o<}-o

nex nty

Cn+¥
Cn+z

=]

P4P,P4P,

Cnix = Go + PoCp
= G1 + P1GQ + P1POCI'1

Gp + PyGy + PoP1Gg + PoP1PoCh
Ga + P3G2 + P3P2G1 + P3P2P1GQ

C,

n+z

Figure 15. Am2902 Carry Look-Ahead Generator Logic Diagram and Equations.

[T 1

bdd

Am2914

G; Gy G
AD _ 95 4 3

Va
Vi
Vo

Az — Vs |

AM2913 Ay f— Vi

Am2914

A b— va

RD

vz
Vi
Vo

gluluu

VECTOR

G2 Gi QUTPUT

E;

Am2gi4

RD
Va

Vz
Vi
Va

Vi

Vo

INSTRUCTION
ENABLE

I3
msmuc‘non[Iz
INPUT| Iy Iy

lo

Am2914

IRPTS 0-7

RD

vz
vq

Figure 16. Vector Connections for both the Parallel and Ripple Cascade Modes.

System. Figure 21 shows an eight interrupt level ICU, and Figure
22 shows an ICU which has sixteen levels. In both designs, the
Am2914 Instruction inputs and Instruction Enable input are driven
by the lp.3 field and IE bit, respectively, of the Microinstruction
Register. Note that Am2914 Instruction inputs are enabled only
when the 1E bit is LOW. Therefore, the Io.5 field of the Micro-
instruction Register may be shared with another functional unit
of the computer such as the ALU.

The Latch Bypass input is shown connected to ground so that a
Low-going pulse will be detected at any of the Interrupt Inputs.
The designer has the option of connecting the Latch Bypass input
to a pull up resistor connected to +5 volts. This makes the inputs
low level sensitive. They are clocked in by each system clock. Itis
therefore implied that the processor will have to acknowledge the
interrupt so that the interrupting device will know when to release
the interrupt request line.

(3

o 4

Gy Gy Gs GROUP GROUP
O SIGNAL ADVANCE
GROUP SEND
I
L i ENABLE
A g L ars Biane : Am2914
Am2913 2
i b o 8 GROUP
s ADVANCE
lo fp——— “ RECEIVE
INTR24-31
E, Gy G
f[‘ ‘ GROUP GROUP
- O GIGNAL ~ ADVANCE
L of GRouP R
ENABLE
s Amz914
2
s s GROUP
S5 s, ADVANCE
STATUS | g, RECEIVE
oUTPUT
5
Sp
GROUP GROUP
SIGNAL ADVANCE
of GROUP SEND
ENABLE
Am2914
Sz
S GROUP
sy ADVANCE
) RECEIVE
Y3 o
) ¥; o
Am25LS138
GROUP GROUP
— A ¥y fo—— A signaL ADVANCE
GROUP SEND
Yo O 9| enaBLE
Am2914
Sz
I S GROUP
5 ADVANCE
ey ! RECEIVE
INTRO-7 §

Figure 17. Group Signal, Group Enable, Group Advance Send, Group Advance Receive and Status Connections for Both
the Parallel and Ripple Cascade Modes.

Inputs __(_)utpuu

Bl To Ty T2 T3 Ta Ts T Tz |Ag Ay Ay EO
Tp Ty [T3 Ta s [Ty E H X %X X X X x X X|L L L H
L H H H H H H H H L L L L
L X X X X X X X L|H H H H
LoXx X X X X X L H|L H H H
L x x x X X L H H H L H H
é} {} % L X X X X L H H H|L L H H
L X X X L H H H H|H H L H
L X X L H H H H H|L H L H
L X L H H H H H H|H L L H
| L L H H H H H H H|L L L H

I == H = HIGH Voltage Level

- L = LOW Valtage Level

‘| X =Don't Care

ForGqy=H,G2=H,G3=L,G4=L,Gg=L

Gl G2 G3 G4 G5 | Ag Ay A

H H L L L Enabled
I L x x X X F4 r4 F4
A‘I A2 x L x X X z z F4
x x H x X Z F4 Z
x x x H x Z Z Z
X X X X H Z Z Z

Z = HIGH Impedance

Figure 18. Am2913 Priority Interrupt Expander Logic Diagram and Truth Table.
11

<
o

G2a | ¥ Inputs Outputs
—] Enable Select
a28 :}’_*‘ Gl G2A G2B|CBA| Yp Y1 Yz Yz Yq4 Ys Yg Y7
L X X XXX H H H H H H H H
}Vz X H ¥ |[XXX| H H H H H H H H
X X H XK X H H H H H H H H
H L L LLL L H H H H H H H
'_DD_Y H L L |LLH| H L H H H H H H
: H L L [LHL| H H L H H H H H
H L L |[LHH| H H H L H H H H
D" H L L |HLL H H H H 1 H H H
Vg
D D H L L |HLH| H H H H H L H H
A
H L L |[HHL{ H H H H H H L H
— H L L HHH H H H H H H H L
[
H=HIGH
——|>o— L = LOW
B
— X =Don't Care
[D
C—{»——q} \.-7
Figure 19. Am25LS138 3 to 8 Line Decoder Logic Diagram and Truth Table.
INSTRUCTION WORKING
REGISTER s *1 REGISTERS
MPUTER CONTR ARITHMETIC
‘a COMPU COl OL UNIT LOGIC
UNIT
MICROINSTRUCTION REGISTER J
. PROGRAM COUNTER
AND
\. MEMORY ADDRESS
[REGISTER
L =2
~ o
ﬁ hud
L4
;_ﬂ 2
NEXT
MICROPROGRAM CLOCKS
ADDRESS CONTROL
1 . @ MEMORY
TEST o BANK 1
COMNDITIONS @
w
@
8
CONTROL PANEL INTERRUPT <
oR CONTROL 4 oy
OTHER PROCESSOR UNIT

VoV

INTERRUPT REQUEST

TO INTERFACE CONTROLLERS
Am2905/06/07/15A16A/1TA

Figure 20. A Generalized Computer Architecture.

12

MICROINSTRUCTION REGISTER

[=]

e

=

FROM DATA BUS
SOURCE CONTROL

INST
ENABLE
INTERRUPT INTERRUPT
REQUEST —/L'-'O INPUTS
INPUTS & PPy
LATCH
r BYPASS
SYSTEM ———=| CLOCK
CLOCK
™
INT
ois

INSTRUCTION
o3

AmIAT4

STATUS
O'FLOW

VECTOR
02

STATUS
o2

MASK
o7

|RFT REQ

GRP
EN

LOGIC
Q
cs
A Am29751 s
o2 MAPPING DB (15
PROM o I
(2
Az
DB &:10

DB 0:7

o—

V,

4700

DATA BUS (DB 0:15]

TO MICROPROGRAM

L1 1

MNEXT ADDRESS
CONTROL

N\

Figure 21. 8 Level Interrupt Control Unit for Am2900 System.

MICROINSTRUCTION REGISTER

[]

o3 |

i FROM DATA BUS
N o SOURCE CONTROL
4 STATUS INT LOGIC
O'FLOW oIS
of NsT EN GAPSIG O !)
3 =]
p—=—| INST 03 VECTOR 02 Aoz Am2ET51
MAPPING 0B 0:15
PAR DIS Ag PROM
2 N
Amzais GRP EN -—o<= Aa
INTERRUPT - e
REQUEST ANT INPUT: RERU]
INPUTS 9 POPU : < DEEIS
e 7 MASK -7 a 16
DB 0:2 DE0:3
LATCH BYP 3
STATUS 02 3 -
2900 SYSTEM DB 3
CLOEK CLOCK ap VRPTREQ fO-
GAR DIS otz fa o
Gy Gz G3 Gy Gg
Vee— Yp¥y
GAS INT “
oIS Am2a13
of nsT EN P o v A
GRPSIG O 1 T
e ST O3 VECTOR 02 Yo
El
Am2814 GRP EN |Or I
INTERAUPT
B DEO-7 =
REIﬁgEﬂ Of INT INPUTS MASK 07
i PoPy Voo ‘
3
LATCH BYP STATUS 0-2 ar00
CLOCK IRPT REQ |0 TO MICAOPROGRAM
MEXT ADDRESS
GAR CONTAROL

|||[

DATABUS (DE 0:15]

Figure 22. 16 Level Interrupt Control Unit for Am2900 System.

13

In Figures 21 and 22, the Status and Mask inputs/outputs are
connected to the data bus in a bi-directional configuration so that
Status and Mask Registers may be loaded from or read to the
data bus with appropriate Am2914 instructions. This gives the
designer two possibilities which could be very advantageous.

Number one is the ability to store the Status and Mask information
on a stack in memory. This is very advantageous when doing
nested interrupts. Secondly, it allows the designer to construct
machine instruction that can modify these two registers. This is
very important to the system programmer who is involved in
writing software to manage the interrupts.

For the eight level ICU of Figure 21, the Status Overflow output is
connected to the Interrupt Disable input, and the Group Advance
Receive and Group Enable inputs are connected to ground, as
previously described.

For the 16 interrupt level ICU of Figure 22, the Parallel Disable
output of the higher priority group serves as the high order vector
bit. An Am2913 Priority Interrupt Expander is gated by the
Am2914 instruction lines so that its output is enabled only during a
Read Status instruction, and is used to encode the high order bit
of the status. An inverter suffices to decode the high order bit of
the status bit during a Load Status instruction. As described
previously for a ripple cascade system, the Group Advance Re-
ceive input of the next higher priority group; the Ripple Disable
output is connected to the Interrupt Disable input of the next lower
priority group; the Status Overflow output of the highest priority
group is connected to the Interrupt Disable input of the same
group, and the Group Advance Receive input of the lowest priority
group is connected to ground.

In both designs, two Am29751 32-word by 8-bit PROM's with
three-state outputs are used to map the Am2914 Vector outputs
into a 16-bit address vector. The PROM outputs are connected to
the data bus. When a Read Vector Instruction (Am2914) is exe-
cuted, the address vector is available to be used either as the
address of the next instruction or a location to find the address of
the next instruction to execute.

Figure 23 shows a design where the address vector from the
mapping PROM can be clocked into a register in the Am2903’s.
The registers in the Am2903’s would be split between general
purpose, scratch, stack pointers and Program Counter registers.

The address vector also may be gated directly to the “D"” inputs of
the Am2911 Microprogram Sequencer as shown in Figure 24,
and used as the start PROM address of a microinstruction inter-
rupt service routine. This method would be most useful in a
controller application. This method would trade faster service for
a bigger microprogram that accommodates all the code to service
each individual interrupt.

FIRMWARE EXAMPLE FOR Am2914 INTERRUPT SYSTEM

The software for handling interrupt requests is on two levels.
The first level to come into play is the microprogram level. This is
the level at which the request is recognized and the program
counter is manipulated to start execution of a machine level
interrupt service routine which is the second level. When the
machine level interrupt service routine is finished, some form of
a Return Interrupt instruction is executed. The microcode for the
return instruction manipulates the program counter so that
execution of the current machine program previous to the re-
quest is restored as shown in Figure 25.

This example is concerned with the microprogram level. This

microcode goes along with the hardware shown in Figure 23. In
this example the code is shown in the form of Flow Charts be-

cause the actual microprogram format will vary from machine to
machine.

The important features to notice that have a direct relevance to
the firmware are the Latch Bypass and where the Mask, Status
and Vector busses go. For this example, the Latch Bypass is
LOW making the Interrupt Latches latch up on a negative going
pulse. The Mask and Status busses go to the data bus allowing
the Status and Mask data to be transferred to and from memory.
The Vector bus passes through a mapping PROM to the data
bus where it can be read into the Program Counter contained in
the Am2903's. The PROM contains addresses of service
routines which correspond to the different interrupt levels.

Another relevant fact, important to understanding the firmware is
that the interrupt mechanism is limited to handle interrupts on
the machine level.

As shown in Figure 26a, the first thing that happens in the fetch
routine (written in microcode) is a conditional subroutine call that
will be taken if an interrupt request is present. This happens
before the current machine instruction is fetched and the pro-
gram counter is incremented.

In the Interrupt routine (shown in Figure 26b) a microprogram
subroutine is first called to push the program counter onto the
system stack. This is done so that the program counter can be
restored in order to resume execution of the machine program
after the interrupt service routine is done. The next thing that is
saved on the system stack is the contents of the Am2914 Status
Register. This is done because the status register which contains
the priority level that would be serviced prior to the interrupt, will
be restored after the interrupt is serviced. This maintains a nested
interrupt structure (fence).

After saving the program counter and status register, the vector
is read out of the Am2914 through the mapping PROM to obtain
the address of the machine interrupt service routine. The ad-
dress is then read into the program counter which resides in the
Am2903's. When the Vector is read, the interrupt request priority
plus one is automatically put into the status register by the
Am2914 so that all interrupt requests of lower priority than the
one being serviced are ignored. This is often referred to as
moving the fence up. Since the vector has been read and the
new address is in the program counter, the interrupt request can
be cleared from the interrupt register via the Clear Interrupt/Last
Vector Read instruction. At this point a jump is made to the
Fetch routine which will now fetch the first instruction of the
machine Interrupt Service routine.

The last instruction that the machine level interrupt service exe-
cutes is an Interrupt Return. This will in turn call Return Interrupt
microprogram. The status is first popped off the system stack
and loaded back into the status register. This restores the Inter-
rupt Fence. The program counter is then popped off the system
stack and loaded into the program counter register. This re-
stores the program counter to point to the instruction that was
going to be executed when the interrupt request occurred.

TIME DELAY WHEN USING THE Am2914

An aspect that should be covered when using any part is how it
will fit into the system timing; because the cycle time of the
system will be as long as the longest delay path in the machine.
Shown in Figure 27 is the longest delay path through the
Am2914 for the previous 16-bit computer example. The calcula-
tions were using both typical and worst case values at 25°C and
5.0V.

The longest delay path for the system where the vector from the
mapping PROM feeds into the “D” inputs of the Am2910 is

9

4

@

@

v

“L# Jeindwo) ug-9| e jo adwexy ‘gz ainbiy

< =~ ~ —— s

[

15

DIBTRY WALEIDA FEIHOOY AHOWIN _ _ DZEEwY HALSIDIH SSIHAQY AHOWIN
A5+
‘£
I]
HAHLD Q] Lot
* vo,
EX T
103138
s 4 P aNYHISD
T
zoszuwy WALSITAY 36
e ERNEr™
nys 1| ’
. AHOWIN
HVHOCHAOHIIN
; J ; _
I * 0 n
L 2 M z | e z b z i Mo
e ~ e M " HolIINGD 2 ovsy
p— Y] gy p— Y g R wha TzsTwY - %
2 = ab— prugl 5
b | oezuv coszuy oAz cosgiy d
B R B ig a iy L | N
s Fois oIz Fong Ooes forg
Toie Tom Ton o S
wa fom o foie e g &
30
s T AN L, mous Ci
39 omddvn OMIddVIN
M
518 51 e
Bl
_ _ ooz
k]
wiLBzuY Xy
ADVAHILNI SN H % = NOUOMREM
418 51 .

Isu@ 91) 8n8 ¥iva

?

"pg 2anbi4

G018 911 SNE SEIHAOY

-

SEIUOOY AHOWI

L E TELE]

o
3
_..gg

s 2 ,|_ b o - o M a xrn T
b s ~ My v HOLLIGNOD 2 osmwy
A Y pu— Y pu— - TzazUnY .
v
- L 5 b—
L Uy EOBTUY tongy poages o6z d
B iy a sy 2) SALYLS WML
Ooes o o Tois “ois fons
L Y e ———— - I -] o, [
L foin

5 A
((((((*
sna Ho
S4B i

(5108 511 SN\ YIVD

OEerwY WILSIDIW SSIVOOY AHOWIN {sl}
M ﬂ A/ W LANBHIINI
L)
AS+ *« =
e ra
L Fnﬁl
ﬂ KKKKK Ll " I‘ﬁ
hlilil o, PR
oy
- . - dem,] =
EDETWY
e riyies =
-
1|

30
DNIddYH

16

€

INTERRUPT
MAIN SERVICE
ROUTINE ROUTINE
L/ 1000
JSB PUSHPC
50 1001 |
INTERRUPT 1002
REQUEST READ STATUS
OCCURS
1003 ‘
53
1004 JSB PUSH
54 |
1005
55 READ VECTOR
56 l
LOAD PC
Figure 25. Machine Level Instruction Flow During Interrupt
Request. |
CLEAR INTERRUPT,
LAST VECTOR READ
y START l
K-/. FETCH
JMP FETCH
CJMP INTERRUPT

Figure 26b. Call Interrupt Service Routine Microprogram
I Flow Chart.

LOAD MAR —— PC

|
RETI
JSB MEMREAD
| JSB POP
LOAD PC—- PC+1]
| LOAD STATUS
LOAD INSTRRG |
] JSB POPPC
b JMP MAP _ I
JMP FETCH
Figure 26a. Flow Chart for a Simplified Microprogram Fetch

p Routine. Figure 26c. Return Interrupt Microprogram Flow Chart.

\—/; 17

® O

‘SUolEINDIED DY "BJZ ainbi4

Lal BOL SU-|ej0]
gl ol (A) 01 5y €062

HLvd AV130 o} LT H 0} sng VL1682

o 5z ooy 61542

g5 or chop oy v162

0z Sl Qo do 5162

$ 1508 1) $18 553600Y v “Xew -dA) yied aosiaag ‘ON 221A2(Q
"aLg 24nbiy
OEAEAY HALSIDAY SEIHAAY ABOWIN OZREWY HILSIOIN SEINAAY AWOWIN

11 1 Q A/ ! e

L)
g

|
Il a 4 a_..wﬂmﬂoo

) -
(‘ - e R] ﬂa a1 ||_|
] .ﬁm:..:q_.a .
| Aoy g '4

—a
— H3LSIEY 10]
e Il
o
~,] D —
. AMONIN J
\; \; WYHDOHAOH N m
. . . >
= E z e] z NMa b = e z xw d E-g
A o p pN W ez a0 -
. oy AN A RN jos— R HAD zEzWY v Hi-og
wiun b wougl peugl by
1y CORZUY woazuy coszuy cogzuy _
u u " N
2 '3 2 el o 2 SMLYLS WIHLD
Ogng Cois %015 Tois Oeng Cons ois fois
3 2 t ! L KT Foim o |
Pain i o g fee o, foe va &
. Eel
PR AN t o _maud WOUS
30 ouidavr ONIdYH
4 '
b1 Ui M
e ——— H oo oy
_ _ H Uais £l
yoazUY
H fos o
wiLgEuY "
v EELETE LR M9 Eal — zhw-_vm_-www.z_
S8 0 .

e BT T IV " — v

‘egg a.nbiq

181 el SU-|B10 |
05 or () % 51162
= HL¥d AV130 e i AGa 0162
ot 4 ooy 61SL2
<s [4]:4 AOL] ri6e
0g St a o do SL.62
{ — 5100 911 5118 s5IMGOY V ‘xely | "dAL | uled evnaeg | "oN @dineQ
OIBZWY HILSIOAN SSIWOTY AWOWIN CIBZUWY WALSIDAY SSIN00Y AHOWIN
_ A/ W LaNHYILNI
1)
AS+ -
e rd
[i o g HIHLO, o " Laul I - .|I_|
F e ¥ iy Frizwy __.nai
m R eog
‘o 7 7 aNwu3aa l_ w _‘
T i
— - :
MW =)) :
AHONEN
Ma % 2 .I— Me * 2 Ma b 2 T "z X
v v oy v N NolLIaNOS
L T L P A Y g i zzazuy
gl veug reugl— veug
. ug ORIy d oty " EOBZWY 4 COGzwY ﬂ
o g = va =] SNLYLS WIHLD
oS fois Taig Cong ons fos
oney va "0 o o Fon o o foin
N
S48
]
v NALBDRY HALSIDIY
S48 8 o HOLLINE LSN

ISLIA %10 SN0 YLvG

D

19

E

-agg ainbiy

144 TOAS HLVd AVTRd
U 310AD 'HLVd AVIIA

i - — v

— I—n‘

HALSIDAH
NOULDNMLSNI

DZECWY WILSIDAY SSIL00Y AHONIN ZEZWY HILSIDIN S5OV AHOWIN 1—
. ! 5L53N03Y
LdNEHILNI
]
ns+
] \ og
LD o B
O -y ¢
g’ og
133138
s P . awvuIdn '4
e
"2 W
roazay HALSIDIH 10]
e WNr3dId
u W ’ \
AHORIN
t MO
\— .l; WALSAS
, & . 4 h
[z i~ a z Mo z " a z xnm I 43
] S ek K " P 22 sz HALsI0aY
L pu— R p—] s Y uAn zzazwY VW 1-tg
£y - vy f— afb— I
Ry coszuy sy
o 2 o vy L]
o fois o fois R fois
4 w [[[0 .
00 o (O T vo (92 oo, foe
518 51
vELBzIY
sno
S0 91

{

¢

IsuE 91} 8na wiva

20

‘pgz anbiy

s HLWd A¥130

5 i [S, ’

_ OZEZUY HALSISI SSIHOOY AUONIN _ DZETUY HALSIDT SSAHOOY AUOWIN
1 s153n034
% LANBHALNI
B
A5+
- g - 7 S —
HIMIC 9 1 o

i
—

' 7 7 7 freciiy-g l_ ‘

*
-

osuy uALSIDIY 30 2

e ETTErM

M W | | ,
. AHOWIN
WYHDOUAGH M
l|* J 4
M ooy

T

T
T
|

|

A
8 z - - 1 a
Sy v oy oy N W o9 Qs
L) AN Y g N po— Y) Zz6TuY - Li-ag
veug veug b waug L T
G L oAy oSty
E e] o vy o f—
g fois “ois fois Ciorg Toig
0, [Toin [[&
o o e wa So® oo o o &
El]
LN 10 MWowd WO
DNIdYIN OMIddYH

S48 91

|

o

WilBEwY
v sna HALSDIN
S48 91 HOILINELSHI

¢ I & g

& 9 ®

21

>

?

.mww,m_n_

?

L+U 370AD ‘HLVd AV13a
U 3TJAD ‘H1vd AvI13a

518 04

| SN0 500V

7t 7t

A.ﬂ

A.ﬂ

OZEDWY WALTIDAY SIIMO0Y AHOWIN

OTEIWY WILSIOA SSIHO0Y AHOWIN

WALSAS
m ~ o a r—
_ _ % LdnHYALN
ki .
a5+ .
7 P | S —
i] Lqul a
{ [TERTT)
| ' PLpzuRy
H o ™
i TS 0g
| 1937135
g i aNvHAG0 A
befs W {
Toszuy] LSO 20 z
A5+ ¥ ANAd
i
1
™y 1 % ¥
@ —— l |-
a m glr
i AVHOGUAGHDIN
| r
N Ma 4z S P hda 2 o e A= Wt
- 3002
v e e K e N oy 22 oiBzwY
AN PRTS g AN P o Y HAG TzEzUY vn 1i-0g
] = a 3 — vy
g EOGZUY oezwy coezwy coazuey ﬁ
£} e] o 2 a SNLYAS HINLO ™
ois o S o5 o fois
€ 5 [
504..“ e o o o 0w o Fow &
AN ZEN Houd * mous
30 oMiddve LAY
Ll
508 91 Aty
11 .
voazusy
]
v viBTwY *a
s e Ho, 19] fassndr
S48 91 % HOLLINHLSNI

ISU8 91} N8 ¥1vD

22

© €

Device No. Device Path Typ. Max.
29775 CPto D 15 20
2914 ltoV 40 55

| 2918 ts (Data) 5 5
Cycle n Total-ns 60 80
2918 CP to Q 8.5 13
27519 Ato O 25 40
2910 DtoY 14 22
29775 ts (A) 40 50
Cycle n+1 Total-ns 97.5 125

Figure 28f.

Device No. Device Path Typ. Max.
2914 CP to IRQ 65 82
2922 Dp to Y 13 19
2910 cCtoY 27 44
29775 ts (A) 40 50
Total-ns 145 195

Figure 28g.

Device No. Device Path Typ. Max.
2914 CP to IRQ 65 g2
74574 ts (Data) 3 3
Cycle n Total-ns 68 85
74574 CPtoQ 6 9
2922 Dy to Y 13 19
2910 CCtoY 27 44
29775 ts (A) 40 50
Cycle n+1 Total-ns 86 122

Figure 28h.

shown in Figure 28. This path is much longer because of the two
PROM's that have to be accessed. Therefore, there may be a
trade-off of slightly longer system cycle time for faster service of
interrupts via service routines in microcode.

For some systems the delay time shown in Figure 28b may be
too long. Therefore, the designer can split the delay time into
parts by putting a register between the Am2914 and the mapping
PROM as shown in Figure 28c. When done in two system clock
cycles, the delay time will be as shown in Figure 28f.

Figure 28d shows the delay path from the Interrupt Request
Register through the Condition Code MUX to the Am2910. The
time calculations are shown in Figure 28g. Again, for some sys-
temns, this path may be too long. Therefore, as shown above, this
path may be broken in two, which is shown in Figure 28e. This
will result in two system clock cycles. The delay involved in each
cycle is shown in Figure 28h.

ANOTHER EXAMPLE OF Am2900 SYSTEM
USING THE Am2914

As shown in Figure 29, this example varies in the way that the
interrupt request is recognized by the microprogrammed

23

machine. In this example the interrupt request line for the
Am2914 enables or disables the MAP signal going to the map-
ping PROM. When an interrupt request is present and a Jump
Map instruction is executed, the output of the mapping PROM
remains tri-stated; and the bus connected to the D" inputs of
the Am2910 is HIGH because of the pull-up resistors. Therefore,
the microprogram will start executing at the highest location in
microprogram memory when an interrupt request is present. At
this location a Jump Instruction to the microprogram interrupt
service routine could be placed. The microcode is written so that
the only time a Jump Map instruction is executed is at the end of
the Fetch microprogram routine as shown in Figure 30a.

In the previous example the interrupt request was recognized
before the program counter is incremented after which the Jump
Map instruction is executed. When the Jump Map is executed,
either the instruction is executed or an interrupt request is ser-
viced. Therefore, when the Return Interrupt machine instruction
is executed, the program counter needs to be backed up via
microcode, as shown in Figure 30b, in order to refetch the
machine instruction which was lost. This also dictates that the
program counter have a path to an incrementer/decrementer or
ALU, which in this example is handled by putting the program
counter in the Am2903's.

MICROPROGRAM LEVEL INTERRUPT EXAMPLE

Some high-speed control applications require extremely fast
interrupt response. While it may ordinarily be desirable to com-
plete an entire processing sequence (such as executing a mi-
croprogram for a macroinstruction) prior to testing for the inter-
rupt and allowing it to occur, it is not always possible to achieve
the required interrupt response time desired. If this is the case,
microinstruction level interrupt handling must be employed. The
technique described below has a maximum latency of three mi-
crocycles which can be 450-600ns total. Implementation is
straightforward using the Am2910 Microsequencer, a 40-pin LS|
device that can control 4096 words of microprogram at a 150ns
cycle time, and a few extra MSI and SSI packages. In this appli-
cation, the Am2910 is configured in its standard architecture.
The additional logic does not influence the normal system cycle
time.

If microlevel interrupt handling is to be employed, logic must be
provided to generate a substitute microprogram address corre-
sponding to the location of the interrupt service routine. In the
event of a microlevel interrupt, the sequencer address outputs
are tri-stated and the substitute address is placed on the micro-
program address bus, causing the next microinstruction fetch to
be determined by the interrupt control vector generator. While
this is happening, steps must be taken with the Am2910 to in-
sure that the interrupted routine can be properly restored. To
understand this procedure, it will be necessary to examine the
Am2910 in more detail.

Referring to Figure 31, the microprogram address bus is driven
by the Y outputs of the Am2910 through a tri-state buffer than
can be disabled by means of the OE input. The address is
selected in a multiplexer from a direct input, from a register/
counter, from a push/pop stack, or from a microprogram counter
register. The microprogram counter register is commonly used
as the address source when executing the next microinstruction
in sequence. Whenever an address appears at the multiplexer
outputs, it is incremented and presented to the microprogram
counters inputs. At the rising edge of the clock, this new address
that is current address-plus-1 is loaded into the microprogram
counter and a microprogram access begins at this address.

® O J

‘Z# 19indwo) 1g-91 e jo ajdwexy ‘gz ainbig

< -~ -~ ——— S

— ODSTSY WALTIDAM SEINOOY AUOWIN OZEEWY HILSIOIH SEIHOAV AHOWEN _

g
WML Ll

L1

v LBz -
o

ER Y L0y

] e oA, :4 _‘

. P W
i i o :
n L y
T
& AHONIN
* ﬁ \; WYHDOHA0H N
A A A Erara

(7
[rr

frr

24

(5418 911 SNE YLVD

>
ﬂ 8 z 8 z a z o] xm
000
¥ N NOLLOND D 2 oLy
p— N B g vy - o eeeuny . g
Frug Py e weug b Brun ——
— L oz coszuY boszuny
.. " . z
i ? N 3 g 2 SNAYLS HIHLO
“ois fois “ois Fors s Cons
Soio o E! [[
va o g foe -l wa =] 3
5+
AN AN 2N N * woud
L] oMY
“
5418 81 o
S
[] -]
n
wiBzwY iy
E H oy 15 HILSDIY
S0 9 .\ HOLLONELENI

e €

START
RETI2

JSB POP

LOAD STATUS

T

JSB POPPC

1

LOAD PC=—PC =1

JMP FETCH

START
FETCH2
LOAD MAR—=—PC

LOAD PC=—PC+1

|

JSB MEMREAD

LOAD INSTRRG

JMP MAP

Figure 30a. Return Interrupt Microprogram

for Second Example.

Figure 30b. Fetch Microprogram for the Second Example.

|
=
o
y

Qe

REGISTER/ <
COUNTER
R

DETECTOR

ZERO

STACK

POINTER —C> FOLL

|

5WORD X 12BIT
> STACK

ouT

IN E

{

o] R
MULTIPLEXER

e

DECREMENT/HOLD/
LOAD

INSTRUCTION
PLA

SELECT/CLEAR

PUSH/POP/HOLD/CLEAR

> MICROPROGRAM
COUNTER-
REGISTER .

it

INCREMENTER |—<J CI

=000

MAP

VECT

¥i

—

12-BIT DATA PATH

CONTROL PATH

Figure 31. Am2910 Block Diagram.

25

Note that at this time, whatever was fetched at the previous
address was loaded into the microword register for execution.
Thus, the microprogram sequencer is always looking for the
address of the next microinstruction to be executed (while a
previously fetched microinstruction is residing in the microword
register). Subroutine and microprogram loops may be ac-
complished by using the stack and the register counter. Re-
gardless of what is selected as source of next address, the
selected address will be incremented and presented to the
microprogram counter. So to accomplish a microprogram
branch, one would simply select the D inputs for a branch ad-
dress for one cycle, then the next address source could be
switched back to the program counter on the next cycle which
would then contain the branch address plus 1.

This is a carry input to the incrementer which is normally tied
HIGH. In the case of a microlevel interrupt, the microprogram
sequencer will not determine the address of the next microin-
struction to be executed. Instead the sequencer output will be
tri-stated and a substitute address will be placed on the bus. The
sequencer continues to operate in a normal fashion with its mul-
tiplexer output being incremented and presented to the micro-
program counter register. It must now be noted that the instruc-
tion located at the address then coming out of the multiplexer
outputs will not be executed but rather the next microinstruction
to be executed will be determined by the interrupt vector
generator. It would therefore, be wrong to increment this micro-
program address but rather it must be saved intact in order to
push it onto the stack for access during interrupt return. This is
easily accomplished in the Am2910 by grounding the carry input
to the incrementer simultaneously with three-stating the se-
quencer output. Then the multiplexer output will be stored in the

microprogram counter register and on the next microcycle the \J

Am2910 must be told to push in order to preserve this address
on the stack.

This carry-in input is all important and exists on all Advanced
Micro Devices' microprogram sequencers. Unless the carry-in is
grounded, whatever address was in the multiplexer output when
the sequencer output was tri-stated is incremented and an in-
struction is missed in the interrupted routine. This, of course,
would likely be disastrous. The key to this microinterrupt
technique is that the address of the unexecuted instruction
(when the Am2910 was tri-stated and a substitute address
supplied) is preserved by inhibiting the increment via the carry
input, so the address is passed on intact to the microprogram
counter. If the microinterrupt is to be more than one cycle long,
the microprogram counter must be pushed so as to save the
return address. Otherwise, a “continue” may be used to return
from the interrupt on the very next cycle. In this event the mic-
rointerrupt effectively inserts one instruction in the stream.

Figure 32 is the block diagram of a hardware design that imple-
ments the above concept. The SYNC/CONTROL and INTER-
RUPT CONTROL/VECTOR GENERATOR logic are shown in
detail in Figure 33. Part of the Am2918 and both ‘LS74 Flip-
Flops are used to synchronize the recognition of the asynchron-
ous interrupt request as shown in Figure 34. The interrupt re-
quest arrives at the interrupt input. On the next clock cycle it is
clocked into the Am2918. In the following clock cycle a pulse
that is one system clock cycle long is put out by the flip-flop pair
FF1 and FF2. The pulse is used to disable the carry input of the
Am2910, tri-state the output of the Am2910, and enable the
jump vector onto the input of the PROM. The vector indexes into
a table in microprogram memory that contains "JUMP SUB-
ROUTINE" instructions to different interrupt service routines.

— | INTERRUPT
CONTROL

B — AND
VECTOR

— GEMNERATOR

rest | —— MAPPING
COMNDITIONS | —— PROM
FROM | — TEST
SYSTEM | —— MUX
oR | —
(OUTSIDE) | ——
—
I
- Am2910 >
— SYNC AND N MICROSEQUENCER SYSTEM
SCEOCK —=1> CONTROL e e cLOCK
LOGIC TE O oE ’
/
o /
=
= ~~~”] MICROADDRESS BUS
-
«WORD PROM

~WORD REGISTER J-—

L]

——

CONTROLS TO SYSTEM (OR OUTSIDE)

o

Figure 32. Computer Control Unit Set-up for High-Speed Micro-Level Interrupt Handling. Latency is a Maximum
of Two Microcycles (i.e., about 300 to 500ns).

26 u

p——— Cyy OF Am2810

0 o—e—AAN— b
[
w
E

s
FF1 FF2
D Q D a :D— _
LS00 OF OF Am2910
L
'LS74 'LS74 | |
> a —> a
R R
7 7 .5
SYSTEM
CLOCK INTERRUPT REQUEST
Q3 e
Qs 'LS20

. ——ne o

a, ETC. = = ==

O3 9y —————

NTERRUPT Dz = —

HPLTS ‘ Am2918 OE b
Dy ¥
Yz
¥
SYSTEM :
CLOCK ° 1o
MICRO-
ADDRESS
BUS
INTERRUPT INTERRUPT
ACKNOWLEDGE/ MASK/RESET
RESETS FROM PIPELINE
FROM PIPELINE REGISTER
REGISTER

Figure 33. Example of Sync Control Logic and Vector Generator.

crock l I LT LT

@ @ @ @
WTERRUPT ———TTT]
e INPUT
INTERRUPT I
REQUEST
FF1 J

FF2 |
€y OF Am2910 J—
AND OE OF VECTOR |
GE OF Am2910 [|

Figure 34. Timing of Vector Generator and Sync Control Logic.
27

CLOCK ﬁ____l | [

1

l

CYCLE
NUMBER o) @ @ @ ®
SEQUENCE
CONTROL EXECUTE EXECUTE EXECUTE BRANGH D EXECUTE
INSTRUCTION AND PUSH PC
PIPELINE
CONTENTS A A+t A+2 B]
{ADDRESS)
55;‘:_?;2:2 A A2 A+3 o D+1
ADDRESS {PC) (uPC) (xPC) (o) (PC)
xPROGRAM
COUNTER A+1 As2 A+3 A+3 D41
CONTENTS
NEXTPC i A+3
ADDRESS A+2 A+3 (Cyn GROUNDED) D+1 D42
ADDRESS
BEING A+l As2 B o D+1
FETCHED
e | (LT
INPUT |
Am2910 QUTPUT I—']
ENABLE
Am2910 €y |
INTERRUPT
VECTOR I -l_
ENABLE
x X X X A+3
TACK
CONﬁEN?’S x X X x x
X X X X X
X X X X %
X b X X %
COMMENT NORMAL INTERRUPT “SUBSTITUTE" INTERRUPT INTERRUPT
MICROCYCLE IN Am2918 (VECTORED) PROCESSING PROCESSING
ADDRESS BEGINS CONTINUES
SUPPLIED
TO PROM

*This is a JSB instruction, but observe that the return address will be the yet-to-be executed location A+3.

€ ¢

Figure 35. Interrupt Sequence Timing.

CYCLE
NUMBER

SEQUENCE CONTROL
INSTRUCTION

PIPELINE CONTENTS
(ADDRESS)

SEQUENCER
SELECTED ADDRESS

4PROGRAM
COUNTER CONTENTS

NEXT uPC
ADDRESS

ADDRESS BEING.

FETCHED

STACK CONTENTS

COMMENT

[

[1

w

O 4

INTERRUPT
HANDLING
ROUTINE IN
PROGRESS

@

RETURN

=

MO MM 4

LAST
INSTRUCTION
IN INTERRUPT

ROUTINE

@

EXECUTE

A+3

Asd
{wPC)

A+S

A+d

R

PROCESSING
CONTINUES
ON PREVIOUS
ROUTINE

@

EXECUTE

®

ETC.

Figure 36. Return-From-Interrupt Sequence Timing.

28

Figure 35 shows how the interrupt sequence timing fits into the
normal flow of microprogram address in the Am2910. Note how
the stack is used. This demonstrates the need for always re-
serving room on the stack to allow for interrupts. This applies to
any room that the interrupt service routine may require as well
as the return address. This limitation may require that only one
interrupt request be serviced at a time.

Figure 36 shows how the return from the interrupt service
routine fits into the microprogram flow. Notice that a Return
instruction is used to accomplish this.

SUMMARY

In this chapter, Interrupts were discussed beginning with a def-
inition of the Interrupt Mechanism and proceeding to a classifi-
cation of different interrupts and how they are handled. A dis-

29

cussion of the concepts that go into designing the “Universal
Interrupt” hardware was given which culminated with the
Am2914. The chapter ends with several Interrupt Mechanism
applications using the Am2914 and Am2910.

In this chapter it was shown how interrupts can be handled using
parts from the Am2900 family. Because of their hardware mod-
ularity and universal architecture, they may be used in a variety
of applications. Since the Am2900 Family parts are micropro-
grammable, they allow the user's system to grow with time as
system requirements change. Together these attributes make
the Am2900 Family the flexible cost effective family that it is.

T ——

ADVANCED

MICRO

DEVICES, INC.

9071 Thompson Place
Sunnyvale

California 94086
(408) 732-2400
TWX: 910-339-9280

TELEX: 34-6306
TOLL FREE
(800) 538-8450

= .

