Build A Microcomputer

Chapter V
Program Control Unit
Advanced
Micro Devices






y ¢

Advanced Micro Devices

o Build A Microcomputer

Chapter V
Program Control Unit

Copyright © 1978 by Advanced Micro Devices, Inc.

_ Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely
\ J embodied in an Advanced Micro Devices' product.

AM-PUB073-5






e

Introduction

In order to access instructions and data in an orderly manner
within a computer, a Program Control Unit is usually used to
provide the most efficient mechanism for program control. A
program is a set of instructions which direct the processor to
perform a specific task. Ordinarily, program instructions are
stored in sequential memory locations. During the normal pro-
cessing of a program, an instruction is fetched from the location
specified by the program counter, the instruction is executed, the
program counter is incremented, and another fetch and execute
cycle begins. The addressing mechanisms that such control unit
might employ are various. Indeed there are some machines that
literally use dozens of addressing modes to fetch instructions and
data. In this discussion of program control units, several of the
addressing modes and their common implementation techniques
will be discussed. The addressing modes used commonly in
today's machines include register, immediate, direct, indirect,
index, and relative and various combinations thereof.

Data Formats

Technically, an instruction set manipulates data of various length
words. Generally speaking, most 16 bit minicomputers can ma-
nipulate data of three different word lengths: 8-bit bytes, 16-bit
words and 32-bit double words. This data may represent fixed
point numbers, floating point numbers, or logical data. The datais
used as operands for the instructions, and is manipulated as
indicated by the particular instruction being executed.

Typically, fixed point data is treated as signed 15-bit integers in
the 16-bit representation or as signed 31-bit integers in the 32-bit
double length notation. Positive and negative numbers are rep-
resented in the ordinary 2's complement notation with the sign bit
carrying negative weight. Positive numbers have a sign bit of zero
and negative numbers have a sign of one. The numerical value of
zero is always represented with all bits LOW.

Floating point numbers consist of a signed exponent and a signed
fraction. Many different formats are used by manufacturers in
expressing floating point data and these variations will not be
described here. Let it simply suffice to say that the floating point
number represents a quantity expressed as the product of a
fraction times the number 2 raised to the power of the exponent.
In some cases, the number 16 is raised to the power of the
exponent. Typically, all floating point numbers are assumed to be
normalized prior to their use as operands. No pre-normalization is
performed and all results are post-normalized. Usually, the float-
ing point instruction set will normalize un-normalized floating
point numbers.

Logical operations are used to manipulate 8-bit bytes, 16-bit
words or 32-bit double words. All bits participate in the logical
operations.

Instruction Formats

Various minicomputers use different types of instruction formats
ranging from the very simple straight forward formats to the more
complicated difficult to decode formats. For example, a register to
register format can consist of a simple 8-bit opcode and two 4-bit
source operand specifiers. On the other hand, it may consist of a
byte or word specifier, an opcode specifier, source and destina-
tionregister specifiers, and mode specifiers for each of the source
and destination register selections. Again, it is not the purpose of
this application note to describe all of the trade-offs in selecting
instruction formats but rather to select a simple format such that
the student of bipolar microprogrammed microprocessors can
understand the techniques used by instructions for operating the
machine.

Thus, we will use a few 16-bit and 32-bit formats in this application
note to demonstrate the function of the program control unit in
various types of instruction execution.

Instruction Types

For purposes of this application note, we will define nine different
instruction types using various addressing modes. As we define
these instruction types, we will use the basic ADD instruction as
the example in all cases. It should be recognized that the opera-
tions of the instructions are similar for all the arithmetic as well as
logical type operations. However, by using the ADD instruction it
will be easier to describe the operation of each of these instruc-
tions rather than to try to be very general in their description.
Figure 1 shows all nine instruction types with their appropriate
names. As is seen, four of the instruction types are single 16-bit
word instructions while five of the instruction types are double
word or 32-bit, instructions. The advantage of the double word
instructions is that a second word can be used as an address
whereby it provides an index value or a second word can be used
for data which is used as an immediate value.

Register-to-Register Instructions

When the register-to-register (RR) instruction is executed, it is
simply a technique for selecting two of the machine’s internal
working registers in order to execute the desired operation. The
instruction is fetched from memory and placed in the instruction
register and the source register R2 and second source register
R1 are selected as the two source operands for the ALU. Register
R1is the destination register in addition to being a source register
and the results of the ALU operation will be placed in the register
specified by the R1 field. In the instruction format shown in Figure
1 for the register-to-register instruction, the 8-bit opcode field
specifies the machine operation to be performed. The next 4-bit
field, R1, in the instruction format specifies the address of the first
operand. In most machines, the R1 field is normally the address
of a general register. The 4-bit R2 field in the register-to-register
instruction format specifies the address of the second operand;
this also is normally the address of a general register. In most
machines, the R1 field also in addition to being a source operand
is the destination general register select. Thus, the results of the
operation are stored in the register selected by the R1 field.

The RR instructions are used for operations between registers.
We are assuming in this discussion that the machine contains 16
general registers which function as accumulators or index regis-
ters in all arithmetic and logical operations. Each general register
contains a 16-bit word consisting of two 8-bit bytes. For arithmetic
operations, the most significant bit is considered the sign bit using
2's complement representation. The general registers of the
machine are usually numbered from 0 to 15 (decimal) and written
in hexadecimal notation as 0 through F. In this example, the
general registers have not been given specific functional assign-
ments. However, in some machines certain registers are as-
sumed to perform specific functions. These can include specific
stack pointer registers and program counter registers. Figure 2
depicts the typical signal path for executing the RR instruction in a
bit-slice system.

The actual operation of the Register-to-Register Instruction is as
follows. First, the instruction is fetched and placed in the instruc-
tion register as shown in Figure 2. This is part of the fetch routine.
Next, the instruction is decoded via the mapping PROM and the
appropriate microinstruction in the microprogram memory
selected and placed in the pipeline register. Then, the instruction
is executed where the two registers in the general purpose regis-
ters of the Am2903 are selected by the contents of the R1 and R2
fields of the instruction register. The actual microcode required to




Register-to-Register ADD INSTRUCTION
0 7|8 1112 15

oP R1 R2 (R1) — (R1) + (R2) \

Register-to-Memory Reference

] 15 ,
op [ R | x (R1) « (A1) + [(x2)] '
Memory-to-Memory
0 15
OP [ x1 | x2 [xn)]) < [x1)] + [(x2)]

Register Short Immediate :
0 15 I

OP | R1_|DATA (R1) < (R1) + DATA
Register-to-Indexed Memory
0 15]16 31
o [ riJ x ADDRESS (R1) « (R1) + [(x2) + A]
Register-to-Memory Immediate
0 15|16 3t
opP [ a1 | x DATA (R1) < (R1) + DATA + [(x2)]
Memory-to-Memory Indexed
0 15]16 a1
oP | x1 | xe ADDRESS [x)] < [(x1)] + [(x2) + A]

Register Immediate

0 15|16 3
OP [ R ] DATA (R1) < (R1) + DATA
Memory Immediate
0 15|16 31
oP | DATA [(x1)] < [(x1)] + DATA

Note: (R1) means the contents of register 1.
[(x1)] means the contents of the word whose address is in R1.

Figure 1. Various Instruction Types for the ADD operation. |

& T N

INSTRUCTION REGISTER

OP CODE | "1 | A2
Y
| MapP l .
B e
REGISTERS
B — |
Am2910 |
|
Am2e03
MPR-562
Figure 2. Register-to-Register Instructions Select Two Registers in the Am2903 Array for Instruction Execution. =
2 -



€

execute this instruction is shown in Figure 3. Here, we assume
the Program Counter (PC) value is contained in one of the gen-
eral registers and can be selected by microcode as well as the R1
and R2 fields. This was shown in Chapter 3.

Register-to-Memory-Reference

The register-to-memory-reference instruction is one whereby the
contents of the memory location pointed to by the register iden-
tified with the X2 value is fetched from memory and then added to
the register value specified in the R1 field. The result of this
operation is placed in the register specified by the R1 field.

Figure 4 shows a general block diagram of the hardware used to
implement the instruction types described in the first part of this
application note. As shown, the memory address register can be
driven by either the Y outputs or the DB outputs of the Am2903s.

In addition, the Y outputs of the Am2903s can be placed onto the
memory data bus by means of a three-state buffer. The computer
control unit is intended to be representative of that described in
Chapter 2 of this application note series. For purposes of this
discussion, we assume the program counter (PC) is one of the
general purpose registers within the Am2903 register stack.
Later, we will change this concept and use the PC external to
Am2903.

The operation of the register-to-memory-reference instruction as
depicted in Figure 1 can best be described by referring to Figure
5. Here, we see the first three microinstructions that represent the
fetch routine for the currently described machine. First, the pro-
gram counter is placed in the memory address register and the
program counter is incremented and returned to the PC register.

Microinstruction Microcycle Time
Operation TO | T1 T2 | T3 |T4 |75 |76 | T7 | 18| TO | TI0| T11 | T12
PC —MAR; PC + 1 - PC X
Fetch Inst to IR X
Decode X
R1+R2 - R1 X
Figure 3. Register-to-Register Instruction Microcode.
s o BT ] Am2903
T

| | !

| INSTRUCTION 0E 1

| ok A B GEMERAL

- a
| mevose | [ ]
]

Am2910
SEQUENCER

I
| |
|

MICROPROGRAM
MEMORY

PIFELINE
| REGISTER

i
1 |
|
|

RN, S —

—————= CONTROL

V—4

SEL

MEMORY
ADDRESS
REGISTERS

DATA

MEMORY
(MEM)

ADDRESS

MPR-563

Figure 4. Simple Memory Addressing Scheme with PC in the ALU.

3



Microinstruction

Operation TO | 1| T2

T3

Microcycle Time

T4 | T5 | T6 | T7 | T8 T10 | T11 | T12

PC =MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
(X2) - MAR

MEM + R1 -+ R2

Figure 5. Register to Memory Reference Instruction Microcode.

Next, the instruction is fetched from memory and placed in the
instruction register within the CCU. Thirdly, the instruction is
decoded via the mapping PROM and the appropriate micro-
instruction selected and placed in the pipeline register. To exe-
cute this particular register-to-memory-reference instruction, it is
necessary to place the contents of the register specified by the X2
field into the memory address register. Then the contents of
memory can be fetched and the operand added to the value
currently contained in the register specified by the R1 field. The
result of this operation is placed in the register specified by the R1
field. All totaled, the execution of this register to memory refer-
ence instruction requires five microcycles as depicted in this
example.

Memory to Memory

This instruction is one whereby the memory location pointed to by
the contents of the register specified in the X2 field is fetched and
the memory location pointed to by the contents of the register
locations specified in the X1 is fetched and these two operands
are added together. At the completion of the instruction, the
resultant is placed in the memory location as defined by the
contents of the register specified in the X1 field.

The Memory to Memory Instruction operation is also depicted by
the block diagram shown in Figure 4. In fact, all of the next six
instructions to be defined utilize the block diagram of Figure 4 to
represent the hardware required for implementing these instruc-
tions.

The microcode required for the memory to memory instruction is
detailed in Figure 6. The first three microinstructions represent
the fetch routine. In the fourth microinstruction, the contents of the
register specified by the X2 field are placed in the memory ad-
dress register. Then, in the fifth microinstruction the contents of

this memory location is loaded into the Q register within the
Am2903. This value is temporarily held for use later. In the sixth
microinstruction, the contents of the register specified by the X1
field in the instruction is placed in the memory address register.
On the seventh microinstruction, this operand is fetched from
memory and added to the contents of the Q register with the result
being placed in the Q register. In the eighth microinstruction, the
current contents of the Q register is returned to the memory
location. This memory location is specified by the contents of the
register specified by the X1 field and is still in the memory address
register. Thus, we have used the Q register as a temporary
holding register for the data used in this instruction.

Register with Short-Immediate

This instruction is a technique whereby a 4-bit field is added to the
contents of the register specified by the R1 field. Thus, short
jumps or branches can be executed within a range of zero to
fiteen memory locations. The more significant 12-bits of the word
are zero filled.

The register with short immediate instruction operates very simi-
lar to the register-to-register instruction. The microcode for this
instruction is shown in Figure 7. The only difference between the
register-to-register instruction and the register short-immediate
instruction is that instead of adding operands specified by the R1
and Rz fields, we take a data value contained in a four-bit field in
the instruction as depicted in Figure 1 and add it to the contents of
the register specified in the R1 field. The results of the operation
are returned to the register specified by the R1 field. This addition
is performed by taking the 4-bit data value shown in Figure 1 as
the DATA and zero filling the twelve most significant bits. This
gives us a 16-bit word ranging in value between zero and fifteen.
Thus, short jumps can be implemented using this technique.

Microinstruction

Operation TO | T1 | T2

T3

Microcycle Time

T4 | TS5 | T6 | T7 | T8 | T9 | T10 | T11 | T12

PC -+ MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
(X2) - MAR
MEM —Q

(X1) = MAR
MEM + Q = Q
Q - MEM

Figure 6. Memory to Memory Instruction Microcode.

4

v



€

Microinstruction

Microcycle Time

Operation TO (T1 | T2 | T3 | T4 |T5 |T6 | T7 | T8 | T9 | T10 | T11 | T12
PC - MAR; PC + 1= PC X
Fetch Inst to IR X
Decode X
R1 + Data = R1 X

Figure 7. Register Short Inmediate Instruction Microcode.

Register to Indexed Memory

The 16-bit word in the register defined by X2 in the instruction is
added to the address that is the second word of memory. Then,
this address is used to fetch an operand from memory which is
added to the contents of the register pointed to by R1. The results
of this operation are then placed in R1. The instruction format for
this instruction was shown in Figure 1.

The Register to Indexed Memory Instruction is shown is Figure 8
and executed in the following manner. First, the current PC value
is placed in the MAR and PC + 1 is returned to the PC register.
Next, the instruction at this memory location is fetched and placed
in the instruction register. On the third cycle this instruction is
decoded and the contents of the microprogram memory placed in
the pipeline register. On the fourth microinstruction, the PC value
is again placed in the MAR and PC + 1 is returned to the PC
register. On the fifth microinstruction, the value at this location in
memory is fetched and added to the contents of the X2 register

with the result being placed in the MAR. And on the sixth mic-
roinstruction, the operand pointed to by this address is fetched
and added to the contents of R1 with the result being placed in the
register pointed to by the R1 field of the instruction.

Register to Memory Immediate

In the register to memory immediate instruction, the contents of
the memory location pointed to by the register specified in the X2
field is fetched from the memory and the data value which is in the
second word of the instruction is also fetched from memory and
added to it. This result is then added to the contents of the R1
register and the final result replaces the value currently in R1.

The register to memory immediate instruction as shown in Figure
1 is implemented using the microcode shown in Figure 9. Again,
the first three microinstructions are the fetch routine. The fourth
microinstruction is used to take the contents of the register
specified by the X2 field and place it in the memory address

Microinstruction
Operation TO | T1 | T2 | T3

Microcycle Time
T4 | T6 | T6 | T7 | T8 | T9 | T10 | T11 | T12

PC -+-MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
PC = MAR; PC + 1 =+ PC x
MEM + X2 = MAR
MEM + R1 = R1

Figure 8. Register to Indexed Memory Instruction Microcode.

Microinstruction

Microcycle Time

MEM + R1 - R1
PC = MAR; PC + 1 = PC
MEM + R1 - R1

Operation TO | T | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12
PC =MAR; PC + 1 =+ PC X
Fetch Inst to IR X
Decode X
(X2) = MAR X

Figure 9. Register to Memory Immediate Instruction Microcode.

5




register. Next, the operand at this memory location is brought into
the Am2903's and added to the contents of the register specified
by the R1 field with the results returned to that register. The sixth
microinstruction is used to set up the memory address register to
fetch the second word of the instruction. The seventh micro-
instruction brings this data value into the Am2903 ALU via the
data bus and adds this value to the contents of the register
specified by the R1 field. The result of the operation is placed into
the register specified by the R1 field.

Memory to Memory Indexed

The memory to memory indexed instruction is one whereby the
contents of the register specified in the X2 field are added to the
second word of the instruction to form a new address. This
address is then used to fetch an operand which is added to the
operand selected by taking the contents of the register specified
in the R1 field and using that as a memory address to fetch an
operand. The result of this addition is then replaced in the mem-
ory location pointed to by the contents of the register specified in
the X1 field.

The memory to memory indexed instruction is probably the most
complicated of the instruction formats described in the application
note. In all, nine microinstructions are required for its implemen-
tation. Basically, the first three microinstructions are used to fetch
the instruction from memory, place it in the instruction register,
and decode the instruction for initial operation. Again, the basic
fetch routine. Microinstruction number 4 sets up the memory
address register to fetch the second word of the instruction and
microinstruction number 5 is used to bring this value from mem-

ory into the Am2903 ALU where itis added to the X2 register. The
results of the addition are placed into the memory address regis-
ter during this microinstruction. This value is used to fetch a value
from memory which is placed in the Q register using micro-
instruction number 6. In the seventh microinstruction, the con-
tents of the register pointed to by the X1 field are placed in the
memory address register so that microinstruction eight can be
utilized to bring this memory value into the Am2903s where it is
added to the contents of the Q register with the result being
placed into the Q register. Microinstruction number 9 is used to
place this value back into the rhemory location as specified by the
contents of the register pointed to by the X1 field. This memory
address is still contained in the memory address register so that
no updating is required. The total microcode required to imple-
ment this instruction routine is shown in Figure 10.

Register Immediate

The register immediate instruction is a very useful instruction
which allows data to be added to the contents of the register. In
this example, the second word of the instruction is fetched and
added to the contents of the register specified in the R1 field.

Figure 11 depicts the microcode used to implement the register
immediate instruction. Here, the first three microinstructions are
the fetch routine for the instruction. The fourth microinstruction of
this routine sets up the MAR to fetch the second word of the two
word instruction. The contents of this memory location is brought
into the Am2903 ALU and added to the contents of the register
specified by the R1 field. The result of this operation is placed in
the register specified by the R1 field.

Microinstruction
Operation TO | T1 | T2 | T3

Microcycle Time

T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12

PC =+ MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
PC = MAR; PC + 1 =+ PC X
MEM + X2 - MAR
MEM = Q

(X1) - MAR

MEM + Q = Q

Q - MEM

Figure 10. Memory to Memory Indexed Instruction Microcode.

Microinstruction
Operation TO | T1 | T2 | T3

Microcycle Time

T4 | T5 | T6 | T7 | T8 | T9 | T10| T11 | T12

PC = MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
PC - MAR; PC + 1 = PC X
MEM + R1 — R1

Figure 11. Register Inmediate Instruction Microcode.

6

o

W



¢

Memory Immediate

The memory immediate instruction is used to add immediate data
contained in the second word of the instruction to a location in
memory. The memory location is contained in the register
specified in the X1 field of the instruction.

The memory immediate instruction is similar to the register im-
mediate instruction except that an indirect addressing scheme is
used. Again, the firstthree microinstructions fetch and decode the
memory immediate instruction. The fourth and fifth microinstruc-
tions are used to fetch the data value which is the second word of
this memory immediate instruction. Microinstruction number 4
sets up the memory address register and microinstruction
number 5 brings the data into the Am2903 Q register. Micro-
instruction number 6 places the contents of the register specified
by the X1 field into the memory address register so that the
contents of this memory location can be brought into the Am2903
during microinstruction number 7. Here, during microinstruction 7
the contents of the Q register are added to this value and returned
to the Q register. At microinstruction 8, the Q register is written
back to the memory location as specified by the contents of the
register pointed to by the X1 field. This value was already in the
memory address register because it was used to fetch the
operand originally at this location. The microcode for this instruc-
tion is detailed in Figure 12.

Improving Program Control Unit Performance

If we examine the microcode as shown for the various instruction
types depicted in Figure 1, we find that all of these microroutines
have several things in common. First, the very first microinstruc-
tion simply sets up the memory address register with the current
value of the program counter. In addition, this microinstruction
increments the current program counter value. The second mi-
croinstruction simply fetches the contents of memory and places
it in the instruction register. The third microinstruction is used to
decode the microinstruction, select the appropriate micromemory
word and set it into the pipeline register. Finally, the fourth micro-
instruction begins actual execution of the desired instruction. In
all of these examples and using the block diagram of Figure 4, we
find that a bottle neck occurs in the ALU because of our need to be
operating on program counter data and operand data intermixed.
We can improve the performance of the program control unit by
making the program counter an external register and using a
multiplexer to select either the program counter or the Am2903
output to load the memory address register. This is depicted in
block diagram form in Figure 13.

The first effect of implementing a program control unit with this
architecture is that one of the instruction types is shortened by
one microcycle. This is the register-to-memory-immediate in-
struction. The new microcode flowcharts for this instruction is

Microinstruction Microcycle Time
Operation TO | T | T2 | T3 | T4 | T5 | T6| T7 | T8 | T9 | T10| T11 | T12
PC - MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
PC -+ MAR; PC + 1 -+ PC X
MEM —+Q X
(X1) - MAR X
MEM + Q = Q X
Q -+ MEM | X
Figure 12. Memory Immediate Instruction Microcode.
DATA

. e ...] [ol:] AM2903's

I I | v

o | 1

| ccu | PROGRAM [~ LoAD

:_ J COUNTER .~ count

|

89—\

SELECT

—— LOAD

DATA
MEMORY

ADDRESS

MPR-564

Figure 13. Memory Addressing Scheme with PC Outside of the ALU.

7



shown in Figure 14. In this case, we see that a PC value can be
placed into the memory address register and the PC incremented
while the ALU within the Am2903 is being used to perform either a
pass or an addition. Thus, this architectural change has made
some improvement in the thru-put of our machine.

The most important improvement in thru-put realized by the ar-
chitecture shown in Figure 13 can be seen by evaluating the
timing for sequential instructions. That is, what happens when
several instructions are executed sequentially?

Tokeep the examples simple, let's visualize the microcycle timing
chart for three register-to-register instructions executed sequen-
tially. The most obvious timing chart would simply be to take the
register-to-register microinstruction flows as shown in Figure 3
and concatenate three examples of this timing chart. If we do this,
we will see that the final execution of the values of R1 + R2 return
to R1 utilize the ALU, but the program counter is not in operation.
However, the next microcycle requires placing the program
counter into the memory address register. Thus, the architecture
of Figure 13 allows us to do these two micro-operations during the
same microinstruction. If we assume three register-to-register
instructions in sequence in memory; let's call them instruction A,
B and C; the timing chart of Figure 15 results. What we see in this
diagram is that the execution of instruction A can be overlapped
with the set up the program counter in memory address register
for fetching instruction B. Thus, instead of instruction B starting at
time T4, it may be started attime T3. This can be accomplished by
simply having the execution microinstruction also load the MAR
with the current PC value and increment the PC. From this dis-
cussion, we can see that instead of twelve microcycle times being
required to execute three register-to-register instructions, only
nine microcycle times will be required. We should caution that if
the reader counts the microcycles in Figure 15, he will arrive at 10
microcycle times being required. This leads us to our next point.

If we examine all of the instructions described earlier in this
application note, we will find that in all cases, the execution of the
instruction (the last microcycle) can be overlapped with the first

microinstruction of the fetch routine. Thus, the architectural
change shown in Figure 13 not only allows three of the instruc-
tions to execute faster during their total microcode, but in fact all
microinstructions can be executed at least one microcycle faster
because of the ability to overlap the first microcycle of the fetch
routine with the execution of the instruction. This architectural
change therefore saves one or two microcycles depending on the
instruction.

In Chapter 9 we will show how further overlapping at the machine
instruction level can allow us to execute a register-to-register
instruction during every microcycle, effectively; ratherthan every
three microcycles as shown in Figure 15. At the present time, let
us simply leave the discussion at this point.

Subroutining

An implementation technique that is common to the different
addressing modes is the subroutine (also called stack and link).
The subroutine allows sections of main program to access a
common subsection of the program. The general effect is to allow
less lines of machine code to be written for any given program that
employs subroutines.

Figure 16 shows an example of a subroutine within the program.
The main program executes instructions until it gets to instruction
52 which is a call to subroutine. This instruction puts address 80 in
the program counter while saving address 53 in a separate reg-
ister called Return Register. The program continues on from
address 80 to address 85 where it encounters the return from
subroutine command. The return-from-subroutine command
takes a value out of the return register and puts that into the
program counter. At that point the program counter continues
down in the main body of the program until it reaches address 57.
At this time, another call to subroutine may occur forcing the
program counter back to the value of 80 while putting the value 58
into the return address. The subroutine is executed and at ad-
dress 85 the return command is again encountered. At this point,

Microinstruction Microcycle Time
Operation TO | T | T2 | T3 | T4 | T5|T6| T7 | T8 | T9 | T10 | T11 | T12
PC - MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
(X2) = MAR X
MEM + R1 = R1 X
PC -+ MAR; PC + 1= PC X
MEM + R1 = R1 X
Figure 14. Register to Memory Immediate Instruction Improved Microcode.
Microinstruction Microcycle Time
Operation TO| T | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12
PC - MAR; PC + 1 = PC A B c
Fetch Inst to IR A B c
Decode A B C
R1 + R2 — R1 A B c

Figure 15. Register to Register Instruction with Overlap of Execute and PC Control.

8



MAIN
PROGRAM
50 SUBROUTINE
51 80
52 81
53 82
54 83
55 84
56 85
57
58
59
60
61

MPR-565

Figure 16. Subroutine Execution.

the subroutine will return control of the program to address 58 of
the instruction stream and the main program continues to se-
guence through its instructions.

In many systems, one subroutine may very well call another
subroutine which may in turn call yet another subroutine and so
on. To accomplish this the return address linkage must now be
“nested” using a last-in first-out (LIFO) stacking arrangement.
Figure 17 illustrates subroutine nesting. In this example, the main
program contains a subroutine call or jump-to-subroutine com-
mand (JSB) at address 53. Program control is passed to the first
subroutine at address 88, while the return address 54 is placed in
the stack. At address 89 the of the subroutine 1 another JSB
command is encountered passing the program control to Sub-
routine 2 at address 502. The return address value 90 is pushed
onto the top of the stack. This continues in like fashion for calls to
Subroutine 3 and 4 with return address 506 and 723 being placed
on the stack. At address 785 of Subroutine 4, a Return from
Subroutine (RTS) command is decoded causing the return ad-
dress 723 on the top of the stack to be placed in the program
counter and the contents of the stack are “poped” up one place.

At address 725 another RTS command is found, causing the top
of the stack, address 5086, to be placed in the program counter
and the stack is poped. The identical action occurs for the RTS
commands at address 507 and 92 such that control is eventually
returned to the main program and the stack is empty.

The LIFO or subroutine stack in the program control hardware is
shown in Figure 18. When the call from subroutine command is
decoded by the computer control unit, the pipeline register out-
puts cause the stack control to accept the output of the program
counter register and place it at the top of the stack. Next the
subroutine address is brought in from the memory passed
through the multiplexer and placed in the MAR. The subroutine
address is also brought through the multiplexer incrementer,
through the incrementer and placed in the program counter reg-
ister to be used as a possible next source of address. The sub-
routine return address is recovered from the stack when the
pipeline register instructs the stack control logic to place the
return address at the multiplexer. The return address is passed
through the multiplexer and clocked into the MAR. The return
address is also clocked into the PC register via the incrementer
multiplexer and the incrementer, for use as the next sequential
address. Figure 19 shows the jump to subroutine instruction and
Figure 20 shows the microcycles that are used in a typical call to
subroutine command using the program control hardware shown
in Figure 18. At TO the program counter is placed into the MAR
and updated. Time T1 finds the MAR accessing the subroutine
call instruction, with the instruction being placed into the instruc-
tion register. At T2 the opcode is decoded by the CCU, and the
first instruction microcode bits are clocked into the pipeline reg-
ister. Attime T3, the PC is placed in the MAR. At T4 the starting
address of the subroutine is being fetched and placed into the
MAR; the stack pointer is incremented; the current program
counter is placed on the LIFO stack; and the starting address of
the Subroutine plus one is placed into the program counter.

Figure 21 details the microcycle timing for a return-from-sub-
routine execution. At time zero the current program counter is
placed into the MAR, then incremented by one. During time one
the contents of the MAR fetches the return from subroutine com-
mand, which is then clocked into the instruction register atthe end
of the microcycle. Attime 2 the contents of the instruction register
is decoded in the CCU with the control bits being clocked into the
pipeline register. During time 3 the return address on the top of

MAIN
PROGRAM

SUBROUTINE 2

SUBROUTINE 4

SUBROUTINE 1 SUBROUTINE 3 780
88 781
782
783
784
@ 785 RTS
725 RTS
58
STACK STACK STACK STACK STACK
54 90 506 723
54 90 506
54 90
54

MPR-566

Figure 17. Nested Subroutine Example.

9



SP—1-8P

uro || sTack
STACK POINTER
PC
DATA BUS REGISTER
DA Am2903's f
Y
INCREMENTER
T I
L l——ﬂ
l Mux
MLUX i
OE
MAR
ADDRESS
MEMORY
MPR-567
Figure 18. Subroutine Stack Architecture.
OP | | BRANCH ADDRESS
Figure 19. Jump to Subroutine (Branch and Stack) Instruction.
Microinstruction Microcycle Time
Operation TO | T | T2 | T3 | T4 |T5 |76 | T7 | T8 | T9 | T10| Ti1 | Ti12
PC -+ MAR; PC + 1 - PC X
Fetch Inst to IR X
Decode X
PC — MAR; PC + 1 > PC X
MEM — MAR; PC — STACK X
MEM + 1 = PC; SP + 1 = SP
Figure 20. Branch and Stack Instruction Microcode.
Microinstruction Microcycle Time
Operation TO| T1 | T2 | T3 | T4 |T5 |T6 | T7 | T8 | T9 | T10| T11 | T12
PC = MAR; PC + 1 =PC X
Fetch Inst to IR X
Decode X
Stack - MAR; Stack + 1 =+ SP X |
i

Figure 21. Return from Subroutine Instruction Microcode.

10




é

the LIFO stack is placed into the MAR, while that value plus one is
stored into program counter. The stack pointer is then
decremented.

The basic program control hardware thus developed with some
embellishments added are contained within the Am2930 program
control unit as shown in Figure 22. The Am2930 is a 4-bit slice of
the program control unit. It therefore easily allows the address
bus to be virtually independent of the data bus in terms of width.
The Am2930 has a general purpose auxiliary register which has
two sources and two destinations. One source being the D inputs
which flow through the R multiplexer and hence into the auxiliary
register and the other source being the output of the full adder
which is the second input to the R multiplexer. The two outputs of
the auxiliary register go to the A and B multiplexers which in turn
source the A and B inputs to the full adder. The register enable pin
(RE) allows the auxiliary register to be unconditionally loaded
from the D Inputs of the Am2930. The A multiplexer selects as its
sources a logical zero, the output of the auxiliary register, orthe D
inputs. The B multiplexer accepts the outputs of the auxiliary
register, a logical zero, the output of the subroutine stack file, or
the output of the program counter register as its sources.

In the Am2930 design the LIFO stack is 17 words deep, allowing
up to seventeen levels of subroutine. The LIFO stack is controlled
by the stack pointer logic which gives a FULL indication when the

stack is full and an EMPTY indication when the stack has
emptied. The input to the LIFO stack is fed through a stack
multiplexer whose inputs may be D inputs or the output of the
program counter. Thus, depending upon the application, the
stack may be used as either a subroutine stack or a general
purpose LIFO stack which resides on the D bus. The incrementer
and the full adder are controlled by the Ci and Cn carry-in bits
respectively. Figure 23 details the ripple carry connections be-
tween Am2930s in a 16-bit array. The Ci input of the least signifi-
cant slice (LSS) is controlled from the pipeline register.

The Ci signal is internally propagated through the incrementer of
each device using carry look ahead logic. The microprogram
memory, using the Ci input may now cause the Am2930s to
repeatedly access the same main memory instruction if so de-
sired. The full adder has its Cn input tied to ground for the LSS
device of the Am2930 array. The Cn signal is progagated in
parallel through the Am2930s.

For a faster propagation of the Cn signal the interconnection
shown in Figure 24 should be employed. The generate and
propagate pins (G, P) of the Am2902A carry look ahead
generator. The look ahead carries (Cn + x, y, z) are connected to
the Cn inputs of their respective devices. The output of the
Am2930 is three-state and is controlled by the output enable pin

o RE FULL  EMPTY
' !
STACK
l MULTIPLEXER
5 15
R
MULTIPLEXER I
RSEL*
STACK bo b
POINTER p—={ A
] 17X4
Aux. CE REGISTER
REGISTER STACK
R} (8
RCE® RET* {LIFO}
wgr o
PROGRAM
A B COUNTER
MULTIPLEXER MULTIFLEXER REGISTER
RCH
A \/ B
Cn T > Ci+d
FULL ADDER
CEN®
F < <] Ci
§ < e
PC
MULTIPLEXER
Cn+d <
OE 5
CEN® ——r] < |
OEN® K RST* —
OEN* ~——— |NSTRUCTION o
mce =——|  DECODER = R
RSEL® ——f
RCE® —— ——J &c
¥ CF WCC GND MPR-568

Figure 22. Am2930 Block Diagram.

11



DATA '5,
INSTRUCTIONS :
Aa 4 4 4
5 5 5 5
D ] D D
1 | | I
ES Lss
Am2930 Am2930 Am2830 Am2930
FROM
—~— EMPTY Ci Ci+d ci Ci+d ci Ci+4 ¢i — PIPELINE
REG
—— FULL Cn Cn+4 Cn Cn+4 Cn Cn+d Cn —1
Y ¥ ¥ Y =
ADDRESS 'l/ 4 r*’ 4 '{/ 4 'i/ 4
TO
MAR 16
MPR-569
Figure 23. Ripple Expansion Scheme for Am2930’s.
16
DATA
INSTRUCTIONS
4 (4 A4 4
D 5 D 5 D 5 ] 5
1 I | I
Am2930 Am2230 Am2930 Am2830
FROM
——— EMPTY ci ci+4 ci Ci+d4 ci Cisd ci |=— PIPELINE
REG
—~— FULL Cnf=— —G&F cnf=— —GF Cnf=— —GF cn
Y ¥ Y Y
L
ADDRESS 4 2 4 2 4 2 4
TO
MAR 16
Cn+z G2P2 Cn+y GI1P1 Cn+x  GOPO
Cn
Am2902A L
MPR-570

Figure 24. Parallel Look-Ahead Expansion Scheme for Am2930’s.

(OE). Other features of the Am2930 include an Instruction Enable
pin (IEN). This pin allows the Am2930 array to be taken off of the
microprogram data bus thus allowing the bits that were formerly
committed to the Am2930 to be used in conjunction with other
devices. The Am2930 also includes a condition code input (CC).
The Condition Code input permits the conditional testing of a
single bit. This allows the feasibility of such techniques as condi-
tional branching at the macroprogram level. For more detailed
explanation of the Am2930, its instructions and its applications,
see the Am2930 Data Sheet. Figure 25 shows a typical system
interconnection using the Am2930. The instruction lines, Ci, RE
and the OE control pins are connected directly to the outputs of
the combination microprogram memory and pipeline registers
contained in the Am24775 devices. The condition code inputs are
obtained from the Am2904 status and control device, thus allow-
ing conditional jumps on status. Status from the Am2904 is also

fed into the test mux for use by the Am2910 for its conditional
code input. Likewise the full and empty indications from the
Am2930 are fed into the test MUX for use by the Am2910 to
ascertain the current status of the stack. If the stack is full and the
user wishes to push the data onto the stack then the current data
must be emptied from the stack under microprogram control,
using additional hardware.

Another feature of the Am2930 Program Control Unit as shown in
Figure 22 is the full adder between the program counter and Y
outputs. This allows for the execution of PC relative addressing
types of instructions. While this can be an effective addressing
scheme, it will not be covered in detail in this application note.

While the Am2930 offers advantages in small high performance
systems requiring a small LIFO stack, it is not intended to be the
solution for all program counter requirements.

C

O

4



€

I
Am2904
STATUS
AND STATUS
CONTROL Am2903  DATA
DEVICE —= 1
MAP Y
D
—
Am2910
cc Am2930
TEST ARRAY
| G J——""1 MUX p—=—1 Ci
FULL, EMPTY
——| RE
—-={ OF
¥
MAR
AM29775
\ ADDRESS
DATA DATA
OTHER out MEM I
CONTROL
MPR-571

Figure 25. System Interconnection Using the Am2930.

Using the Am2901A as a Program Control Unit

Up to this point, the discussion has concerned a general ar-
chitecture which includes 16 general registers in the ALU section
and the LIFO stack is a program control section as shown in
Figure 18. An alternative architecture and that used by most
general purpose machines, is to place the LIFO stack in main
memory. The stack pointer for the main memory LIFO stack can
be contained in the program control unit to be described in this
section. If the program control unitis built using Am2901A’s it now
has the capability of using its internal registers as the program
counter, stack pointer, upper stack bound pointer, lower stack
bound pointer, and internal temporary registers. This of course
provides considerable flexibility in the architecture and also al-
lows for a much greater repertoire of instructions to be executed.
Particularly, several stack instructions can be included in the
instruction set, most of which will use the form of the register-to-
indexed-memory instruction format as shown in Figure 1.

Another advantage of the architecture shown in Figure 25 is
speed. The Am2901A’s slightly surpass the Am2903 in speed.

Thus, a 16-bit Am2901A program control unit architecture can be
implemented and it will perform well within the microcycle times
budgeted for the system.

Looking at Figure 26 which shows the Am2901A used as a
program control unit and the Am2903 used for the general regis-
ter stacks/ALU section, we see a three-state buffer on the Y
outputs of the Am2903 connected to the data bus as well as a
three-state buffer at the input of the Am2903’s from the data bus.
This provides isolation and buffering for the bus as well as allow-
ing appropriate disconnects so that certain microcycles can be
combined to improve the overall performance of the machine. In
addition a transfer register is used between the Am2903's and
Am2901s to allow a microcycle to be terminated if an ALU opera-
tion is taking place within the Am2903's. This provides higher
performance operation for the machine. In addition, a bi-direc-
tional buffer (such as the Am8304B) is used between the
Am2901A Y-outputs and the Am2903 Y-outputs. This gives the
ability to push the program counter contained in the Am2901A on
the stack for interrupt handling. In addition, values coming from
the Am2903 can be placed in the memory address register.



T
[ } e
| | " | | DA TRANSFER o
REGISTER
| Am2903's Am2901A's
l | Y ¥
L ccu J
OE
J OE
DATA
BUS
MAR
OE
ADDRESS BUS
MEMORY

MPR-572

Figure 26. PCU Architecture Using the Am2901A.

Summary

The thrust of this discussion has been aimed at defining and
implementing hardware to accomplish addressing of main mem-
ory. We have shown that a speed advantage is realized if the
program counter is kept separate from the main general purpose
register stack/ALU hardware. The most general purpose program
control unitis the Am2901A. It offers several advantages in terms
of program control, stack pointer control, and stack pointer
boundary conditions. The Am23930 can be used in program con-
trol units occupying less space and including a built-in stack, but

14

has some speed and performance limitations. Both devices can
be used to implement the basic addressing modes associated
with the instructions described in this application note.

Another purpose of this application note is to set the stage for
Chapter 9 where we will overlap machine instructions such that
register to register instructions can be executed in a single 200ns
microcycle and the memory reference instructions can be exe-
cuted in 600ns (3 microcycles) as the effective execution time.
Also, we will expand on the use of the Am2901A as a Program
Control Unit.

o






ADVANCED
MICRO

DEVICES, INC.

901 Thompson Place
Sunnyvale
California 94086
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE

(800) 538-8450

11-?8.




