CONDITION
|| COPE MUiX

TOTHE 2910.

Build A Microcomputer

Chapter IIi
The Data Path

Advanced
Micro Devices

2 e\

Copyright © 1978 by Advanced Micro Devices, Inc.

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely
embodied in an Advanced Micro Devices’ product.

AM-PUBO073-3

-
b;

INTRODUCTION

The heart of most digital arithmetic processors is the arithmetic
logic unit (ALU). The ALU can be thought of as a digital subsys-
tem that performs various arithmetic and logic operations on two
digital input variables. The Am2901A and Am2903 are Low
Power Schottky TTL arithmetic logic unit/function generators that
perform arithmetic/logic operations on two four-bit input vari-
ables. In most ALUs, speed is generally a key ingredient. There-
fore, as much parallelism in the operation of the arithmetic logic
unit as possible is desired.

The Am2901A and Am2903 ALUs are designed to operate with
an Am2902A carry lookahead generator to perform multi-level full
carry lookahead over any number of bits. Therefore, the devices
have both the carry generate and carry propagate outputs re-
quired by the Am2902A carry lookahead generator. The devices
also have the carry output (C,+4) and a two's complement over-
flow detection signal (OVR) available at the output. The net result
is that a very high-speed 16-bit arithmetic logic unit/function
generator can be designed and assembled using four of these bit
slice devices and one Am2902A (the Am2902A is a high-speed
version of the "182 carry lookahead generator). In addition, the
Am2901A and Am2903 provide a minimum of 16 working regis-
ters for providing source operands to the ALU.

UNDERSTANDING THE BASIC FULL ADDER

The results of an arithmetic operation in any position in a word
depends not only on the two-input operand bits at that position,
but also on all the lesser significant operand bits of the two input
variables. The final result for any bit, therefore, is not available
until the carries of all the previous bits have rippled through the
logic array starting from the least significant bit and propagating
through to the most significant bit. A full adder is a device that
accepts two individual operand bits at the same binary weight,
and also accepts a carry input bit from the next lesser significant
weight full adder. The full adder then produces the sum bit for this
bit position and also produces a carry bit to be used in the next
more significant weight full adder carry input. The truth table for a
full adder is shown in Figure 1. From this truth table, the equations
for the full adder:

S=A®@B®C
Co = AB + BC + AC,

where A and B are the input operands to the full adder and C
is the carry input into the adder.

Inputs Qutputs
A B C S Cg
0 0 0 0 0
0 0 1 1 0
0o 1 0 1 0
[SRR BRS | 0 1
1 0 0 1 0
1 0 1 0 1
1T 1 0 0o 1
1T 1 1 1T 1

Figure 1. Full Adder Truth Table.

The sum output, S, represents the sum of the A and B operand
inputs and the carry input. The carry output, Cg, represents the
carry out of this cell and can be used in the next more significant
cell of the adder. Full adder cells can be cascaded as depicted in
Figure 2 to form a four-bit ripple carry parallel adder.

Note that once we have cascaded devices as shown in Figure 2,
we may wish to discuss the equations for the i-th bit of the adder.
In so doing, we might describe the equations of the full adder as
follows:
Si=A@®B® G
Ci+1 = A;B; + BC; + AG;
where the A; and B; are the input operands at the i-th bit, and
the C; is the carry input to the i-th bit. (Note that the equa-
tions for this adder are iterative in nature and each depends
on the result of the previous lesser significant bits of the
adder array.)

The connection scheme shown in Figure 2 requires a ripple
propagation time through each full adder cell. If a 16-bit adderis to
be assembled, the carry will have to propagate through all 16 full
adder cells. What is desired is some technique for anticipating the
carry such that we will not have to wait for a ripple carry to
propagate through the entire network. By using some additional
logic, such an adder array can be constructed. This type of adder
is usually called a carry lookahead adder.

| X ¥ e Ay X Y. .
cin] 0 1 1 z 2 3 3
[B A C B A C 8 A c B A
s cp s g 5 cy 5 cg
S 81 Sz S3 Cout

MPR-521

Figure 2. Cascaded Full Adder Cells Connected as a Four-Bit Ripple-Carry Full Adder.

A FOUR-BIT CARRY LOOKAHEAD ADDER

Looking back to the equations developed for i-th bit of an adder,
let us now rewrite the carry equation in a slightly different form.
When we factor the C; in this equation, the new equation be-
comes:

Ci+1 = AB; + Gi(A; + By)
From the above equation, let us now define two additional equa-
tions. These are:

G|' = AEB]

Pi = Ai + Bi
With these two new auxiliary equations, we can now rewrite the
carry equation for the i-th bit as follows:

Cis1 = G + PG
Note that we have now developed two terms: the P; term is
known as carry propagate and the G; term is known as carry
generate. An anticipated carry can be generated at any stage of
the adder by implementing the above equations and using the
auxiliary functions P; and G; as required.

It is interesting to note that the sum equation can also be
written in terms of these two auxiliary equations, P; and G;. For
this case, the equation is:

Si = (A + B)(AB;) @ C;
The auxiliary function G; is called carry generate, because if itis
true, then a carry is immediately produced for the next adder
stage. The function P; is called carry propagate because itimplies
there will be a carry into the next stage of the adder if there is a

carry into this stage of the adder. Thatis, G;, causes a carry signal -

atthe i-th stage of the adder to be generated and presented to the
next stage of the adder while P; causes an existing carry at the
input to the i-th stage of the adder to propagate to the next stage of
the adder.

Let us now write all of the sum and carry equations required for a
full four-bit lookahead carry adder.

So =A@ Bo® Co

Sy =A@ B @ (Gp + PoCp)

SQ = Az@ B.@® (G-] + PTGD + P-‘poCo)

S3 = A3 ® B3 @ (Gz + PoGy + P2P4Go + P2P1PCo)
Cisqg = Ga + P3Gy + P3PGy + p3P2P1G° + p3pzp1 PQCQ

An important point to note is that ALL of the sum equations and

the final carry output equation, C;.,.4, can be written in terms of the

A;, By, and Cy inputs to the four-bit adder. The configuration as
described above is shown in Figure 3. This figure is divided into
two parts — the upper blocks show the auxiliary function
generator circuitry required to implement the P; and G; equations
while the lower block implements the logic required to generate
the sum output at each bit position.

A serious drawback to the lookahead carry adder is that as the
word length is increased, the carry functions become more and
more complex, eventually becoming impractical due to the large
number of interconnections and heavy loading of the G; and P;
functions. The auxiliary function concept can be extended, how-
ever, by dividing the word length into fairly small increments and
defining blocks of auxiliary functions G and P.

It is possible for a given block to define a function G as the carry
out generated with the block; and P can be defined as the carry
propagate over the block. If the block size is set at four bits, then
the functions for G and P for this block can be defined as follows:

G = Gy + P3Gy + P3PyGy + P3PoP4Gy
P = P3P,P;Py

MPR-522

Figure 3. Full Four-Bit Carry-Lookahead Adder.

It is important to note that neither of these terms involves a
carry-in (Cp) to the block, so no matter how many blocks are tied
in an adder, all the blocks have stable G and P functions available
in a minimum number of gate delays.

The G and P functions can be gated to produce a carry-in to each
four-bit block, as a function of the lesser significant blocks. The
carry-in to a block is therefore:

Ch =Gno1 + Pho1Gn-2 + Pn1Pn2Gn 3+ ...
+ Pn—1Pn—2Pn—3 S P2P1PQCQ
Finally, the carry-in to each of the bits in a four-bit block must
include a term for the actual least significant carry-in; note,
therefore, that the equations for the four-bit full adder presented
above include a term for carry-in at each bit position.

Figure 4 shows the technique for cascading typical bit slice ALUs
such as the Am2901A or Am2903 and one Am2902A in a full
16-bit high-speed carry lookahead connection. Figure 5 shows a
connection scheme using only four bit slices in a 16-bit arithmetic
logic unit connection where the carries are rippled between the
devices. Each bit slice does use internal carry lookahead over the
four-bit block.

o

U

€

b.

Ag Ay Aghy By By By By AghAg Ag A By B; B By AgAgAipAn Bg By Byplp A1z Arzhiafys Big BrgBig Big
CARRY M o faMAgAy Bp BBy ey o MoMAzhy BBy By By o Mo M1z Ay Bg B1 Bz By ¢ AoRArag Byl Byly Cout
" n n “ .
AmZI01A AmI%01A AmI0LA AmIS01A 4
oR oR aR oA
Am2503 AMPH03 Am2903 AmMZH03 OVERFLOW
Fg Fy Fp F3 B F Fg Fy Fz Fa B F Fg Fy Fp Fa & F Fo Py . F3 Fy ¥R
Fo Py Fa Py Fa Fs Fg Ty Fg Fa Fip Fnr Fiz Fi3 Fia Fig
Gy Py Coes g F . Gy Py Cass
e AmIE2A
MPR-523
Figure 4. Full Lookahead Carry 16-Bit Adder.
Ag Ay Az Ay B By BBy Ag Ag Ag Ay By Bg Bg Oy Ag Agiyphyy B BgByglyy Arpfiafats BizdiaBi b
CARAY 1N Ag Ay An Ry By By By By Ag Ay Az Ay B By By B3 Ap AyAz A3 Bp By B2 83 AgAr Az Ay BpByBr By | Coyr
{Cn Coed Cn [Cn Cnid Cn [
AmTHA AmIHOA Ami2001A AmIB01A
OR Lo3 OR oR
Am2903 Am2903 AmIH0G AmH03 NERFLOW
[T p——
Fo Fi F2 Fa Fg Fip F3 By Fp Fy F3 Fg Fo F1 Fz Fa
Fg F1 Fp Fy Fqg Fg Fg Fp Fg Fa Fig Fyy Fiz Fiz Fa Fis

MPR-524

Figure 5. Connection of 16-Bit ALU Using Ripple Carry.

In summary, the ripple carry method can be used in conjunction
with the lookahead technigue in several ways.

1. Lookahead carry over sections of the adder and ripple carry
between these sections of the adder can be used. This
method is often the most efficient in terms of hardware for a
given speed requirement. It does not require the use of a
lookahead carry generator such as the Am2902A.

2. Lookahead carry across 16-bit blocks with a ripple carry be-
tween 16-bit blocks can be used. This technique is usually
called two-level carry lookahead addition. This technique re-
sults in very high-speed arithmetic function generation and
makes a reasonable tradeoff between the speed and
hardware for word lengths greater than 16 bits.

3. Full lookahead carry across all levels and all block sizes can
be used. This is the highest speed arithmetic logic unit con-
nection scheme. For word sizes up to 64 bits, itis referredto as
three-level lookahead carry addition. Such a 64-bit ALU re-
quires the use of five Am2902A carry lookahead generator
units in addition to the 16 bit slice ALU devices as shown in
Figure 6.

OVERFLOW

When two’s complement numbers are added or subtracted, the
result must lie within the range of the numbers that can be
handled by the operand word length. Numbers are normally
represented either as fractions with a binary point between the
sign bit and the rest of the word, or as integers where the binary
point is after the least significant bit. The actual choice for the
location of the binary point is really up to the design engineer, as

b.

the hardware configuration required for either technigue is identi-
cal. It is also possible to use number notations that include both
integer and fractional representations in the same numbering
scheme. Overflow is defined as the situation in which the result of
an arithmetic operation lies outside of the number range that can
be represented by the number of bits in the word. For example, if
two eight-bit numbers are added and the result does not lie within
the number range that can be represented by an eight-bit word,
we say that an overflow has occurred. This can happen at either
the positive end of the number range or at the negative end of the
number range. The logic function that indicates that the result of
an operation is outside of the representable number range is:

OVR = Cs® Csy4

where Cs is the carry-in to the sign bit and Cg. is the
carry-out of the sign bit.

Thus, for a four-bit ALU with the sign bit in the most significant bit
position, the two's complement overflow can be defined as the
Cn+4 term exclusive OR'ed with the C,, ;5 term.

Putting the ALU in the Data Path of a Simple Computer

Once the Design Engineer understands the basic configuration
and operation of a simple high speed carry lookahead adder, he
can begin to understand the configuration required to implement
the data handling section of a typical computing machine. The
simplest architecture for the data handling path of a minicomputer
is shown in Figure 7. Here, an accumulator is used in conjunction
with an ALU to perform a basic arithmetic/storage capability for
data handling. The computer control unit of Figure 7 can be a
simple or sophisticated state machine as described in Chapter 2.

16 4-BIT SLICES

CARRY-OUT
Can Ceo
G P G P OVERFLOW
[#] [#]
Gy Py Gy Py Gy Py Gy Pp Gy By Gy Pg Gy Py Gz Py Ga Py
b il 1 G2
—c, AmIo0ZA —]|c, Amig0za ¢, AmZO02A v c, Am2I02A
G jo G
e Criy Cnez Cnix Crvy Tz T Crvy Cnez Crex Cry Care
Taty ToCg Talqg Talzp Tolzgq Tolzg Talzg Talag Tolqs TeCgz Tolgs Tolgn
00

GpPp Gy Pq Gz Py

AmZA02A

Cn

Cnsx Cnsy Cniz

Tole

TeCag

ToCap

MPR-525

Figure 6. 64-Bit ALU with Full Carry Lookahead Using 5 Am2902s and 16 4-Bit Slices.

COMPUTER
CONTROL
UNIT

DATA-IN DATA-QUT 0P CODE

MPR-526

A + B + CARRY

A - B - 1+ CARRY
AV B

AAB

A% B

B + CARRY

ZERO

PASS A

Figure 7. Basic Computer Data Path.

While the introductory material of this chapter concentrated on full
adders, it should be understood that more ALU functions than
addition are required if we are in to implement the data path of a
typical minicomputer. Typically, some or all of the functions
shown in Figure 8 are needed if we are to implement a powerful
data handling capability.

The operation of the ALU/accumulator configuration shown in
Figure 7 can be described as follows. The accumulator can be
loaded by bringing data in from the data-in port through the A
input of the ALU, passed through the ALU and loaded into the
accumulator. A second word of data can be presented at the
data-in port to the A input of the ALU and the ALU can be usedto
perform an operation suchas A + B,AORB, AANDB, A - Band
so forth. The results of this ALU operation can then be placed into
the accumulator. The accumulator output is available at the
data-out port for use elsewhere. Additional ALU functions such as

Figure 8. Basic ALU Instructions.

those shown in Figure 8 are easily implemented by adding some
additional circuitry to the four-bit carry look ahead adder shown in
Figure 3. If this circuitry is added, we will arrive at a logic diagram
as shown in Figure 9. This diagram certainly is familiar to most
CPU designers and is the well known Am74S181 four-bit arith-
metic logic unit/function generator.

Once the operation of the simple computer data path as shown in
Figure 7 is understood, the Design Engineer will soon recognize
the need for additional registers if our machine is to be general
purpose and execute instructions. Very rapidly the need arises for
a register to hold a program counter (PC) and a memory address
register (MAR). The purpose of the program counter is to point t

the address of the next instruction in main memory. Typically it is
loaded into the memory address register which actually provides
the address on to the address bus of the machine. Then, the
program counter is incremented through the ALU and stored until

v

=|
5]

<—4— 5

G-

s

I
=1
T —

i

A=B

s-Ha

S=—

F Cg G

MPR-527
Figure 9. Logic Diagram for Am25LS181.
D BUS
4
F BUS
16 16 16
—j :
LD |=— LD Lo
ACC PC MAR
EN |=—p EN BN ceu
4
16 _ -]
. TMDI b BUS »
DATA IN
ADDR ADR BUS
EXTERNAL
MEMORY AW "—T
eNj=—> - ST T T
DATA OUT INST REG
l Moo I
v
16
MPR-528

Figure 10.Three Register Computer Data Path.

it is needed again. The block diagram of Figure 10 shows these
additional registers connected in parallel at the output of the ALU.
(| This ALU output is called the F bus. Each of these registers (the
accumulator, the PC, and the MAR) has an enable input from the
CCU so that they can selectively be loaded with data from the
ALU. In addition, each of these registers has an output enable
such that they can be selectively enabled onto the D bus, The D
bus represents the data output path from the basic computer data

path and also is used as one of the inputs to the actual ALU/func-
tion generator. The other input in this example is called the R bus
and comes directly from the main memory data output as well as
from the I/O data input. As shown in Figure 10, the memory
address register (MAR) has a second output that is used to drive
the address bus. In this example, this register always contains the
address to be applied to the external memory whether it be the
address of data or the address of an instruction.

The best way to understand the operation of this single ALU/three
register machine is to take an example. Let us assume we have
just completed the execution of one machine instruction and are
ready to fetch the next instruction. The first operation would be to
transfer the current value of the program counter onto the D bus
through the ALU onto the F bus and into the memory address
register. This might be accomplished during one microcycle. The
second operation might be to again put the PC on the D bus, pass
itthrough the ALU B port and increment the value atthe B port and
reload it into the PC register. Thus, the PC has again been
updated to point to the address of the next intruction. During this
time, the address from the MAR is on the address bus and we are
fetching data from the external memory and placing it on the R
bus. The third microcycle would be to bring the data out of the
external memory and pass it to the instruction register in the CCU.
The next microcycle might be to decode this instruction and
determine that the next word after the current instruction in mem-
ory (an immediate operation) is to be added to the value currently
in the accumulator. Thus, we would again need to place the PC
into the MAR on one cycle and then increment the PC on the next
cycle. Following this, the data from the external memory could be
brought to the R bus through the A port of the ALU and added to
the accumulator value which is placed on the D bus and brought
through the B port of the ALU. The result would be placed in the
accumulator. This operation would complete the example and we
would be ready to fetch the next instruction. As can be seen, a
number of microcycles are required to fetch the instruction, de-
code it, fetch the data and execute the instruction. One of the best
ways to understand the flow needed to implement a typical in-
struction set is shown in Figure 11. Here, we see the basic
instruction fetch and decode operation followed by the path used
to execute each of the various instructions. Then, we see areturn
to the fetch operation to fetch the next instruction.

Certainly from this discussion we can see how three registers
have enhanced the performance of the simple ALU/accumulator
data path shown in Figure 7. Typically, even more registers than
shown in Figure 10 are needed if we are to increase the power of

BEGIN

TRANSFER PC

PG -MAR TO MAR

INCREMENT PC
PC+1~PC | AND RETURN

READ INSTRUCTION

Moo 1R INTO IR

|

BRANCH
OoN
oP

DECODE INSTRUCTION
OF CODE

I ADD Im | I l
WET 5 PC — MAR READ DATA | oty
Exec PC+1—PC | AND ADD EoeC
MDO+ ACC —ACC | TO ACC

! | |

MPR-529

our machine. If we examine the block diagram of Figure 12, we \)

see a similar architecture to that as shown in Figure 10. Here, the
number of working registers has been expanded to sixteen at the
output of the ALU. These can be used to provide a program
counter function and a number of accurmnulator functions simul-

taneously. In addition, note that the registers have two output |

ports such that the simultaneous selection of any two of the
sixteen registers is possible. Both of these registers can be pre-
sented to the ALU so that operations on two registers simultane-
ously can be executed. In addition, a data input multiplexer is
available at the A port of the ALU such that external data can be
brought in to the configuration. Likewise, there is an output multi-
plexer such that either the A output of the registers or the ALU
output can be selected. This output multiplexer is used to provide
a data out port and the output can also be loaded into memory
address register to provide an address as required. Thus, the
architecture of Figure 12 is quite similar to that of Figure 10 except
that the number of registers has been increased to provide addi-
tional flexibility.

If we assume that one of the sixteen registers inside of this
register file is to be used as the program counter, we see that the
program counter can be brought out of the A output port and
loaded into the memory address register and at the same time it
can also be brought out the B output port and incremented in ALU
and reloaded into the register file. In this architecture it appears
the A output of the register stack can also be brought to the input
multiplexer and the A port of the ALU and incremented via that
path and reloaded into the registers. While this is possible in the
architecture of Figure 12, we are leading up to the implementation
of an Am2901A and this path is not needed in the Am2901A.
Thus, we can implement functions and operations in the diagram
of Figure 12 just as we could in the diagram of Figure 10. How-
ever, what was previously performed in two microcycles can now
be performed in one microcycle. That is, the MAR can be loaded
with the current value of the PC and at the same time the PC can
be incremented and the new value restored in the PC register.

DATA
IN

INPUT
MUX
Caut 4 B
SIGN .
pv ALY I
ZERO E
)
16 REGISTERS
A B
——e
[OUTPUT MUX |

DATA ADDRESS
ouT auT

MPR-530

Figure 11. Steps for ADD Instruction.

Figure 12. Multi-Register ALU.

o

Another feature of the block diagram of Figure 12 is the depiction
of the carry in bit to the ALU and the four output flags associated
with the ALU. Here, carry in is the normal carry in as needed in
any adder such that the device is cascadable. In addition, certain
kinds of arithmetic functions such two’s complement arithmetic
also need the ability to provide a carry in for certain operations.
The most common is two's complement subtract which is usually
performed by complementing the operand to be subtracted, ad-
ding and adding one at the carry in. Also, the ALU shows the four
output flags usually associated with a typical minicomputer.
These are the carry output, the sign bit, the overflow detect, and
the zero detect. These four status flags are used to determine
various things about the operation being performed. The carry out
flag and overflow flag are as described in the previous sections of
this chapter. They provide the carry and overflow information
about the addition.

The sign bit is simply the most significant bit of the ALU and
represents the sign of a two's complement number. Thatis, when
the sign bit is LOW, we assume the two's complement number is
positive and when the sign bit is HIGH, we assume the two's
complement number is negative. Thus, the sign bitis active HIGH
and carries negative weight as we assume in any standard two's
complement number representation. If the reader is unfamiliar
with two's complement number notations, a discussion of this
topic can be found in an application note entitled “The Am25505,
Am2505 and Am25L05 Schottky, Standard and Low Power TTL
Two's Complement Digital Multipliers” as found in Advanced
Micro Devices' Schottky and Low Power Schottky Data Book
dated 10/77. This application note begins on page 5-49 and fully
details two's complement number notation and gives examples.

The fourth status flag is called the zero flag and again is just what
the name implies. This flag represents the fact that all of the ALU
outputs are at logic zero. In this design, a logic zero means that all
of the ALU output bits are LOW.

If the architecture of Figure 12 is extended a little more, we will
arrive at the Am2901A as depicted in Figure 13. Here, we have
redrawn the structure so that the registers are placed above the
ALU; however, the function is identical. Two new functions have
been added to this block diagram that have not previously been
discussed. These are the RAM shift matrix located directly above
the sixteen registers now described as a 16 x 4 dual port RAM.
The purpose of the RAM shift network is to allow the ability of
shifting the data word to be written into the register either up one
bit position or down one bit position. The second function added
to the block diagram is that of the Q register and shift network.
Here, the Q register is used as an auxiliary register such that
double length operations can be performed and it is also used in
the multiply and divide algorithms. In addition, the shift network
allows the Q register contents to be shifted up one bit position or
shifted down one bit position. In addition, it should be pointed out
that the memory address register is not part of the Am2901A. This
is because there were not enough pins on the package to imple-
ment the function and the additional power required by the output
buffers would have reduced the performance of the ALU and
register stack. Instead, this function is being designed into other
2900 family products.

Am2901A ARCHITECTURE

A detailed block diagram of the Am2901A bipolar micropro-
grammable microprocessor structure is shown in Figure 14, The
circuit is a four-bit slice cascadable to any number of bits. There-
fore, all data paths within the circuit are four bits wide. The two key
elements in the Figure 14 block diagram are the 16-word by 4-bit
2-port RAM and the high-speed ALU.

N

s 7]6|s]a]s]2]1]¢
DESTINATION| ALY ALY
CONTROL | FuNCTIoN | soumce

MICROINSTAUCTION DECODE

|
—|RAMy RAMSHIFT RAMy |-
CLOCK —— QEHIFT
T OATAIN |
|
A (READ) n | J
A ADDRAES: oF
aooness | 4 APORESS ‘J' = |
16 ADDRESSABLE REGISTEAS |
B sy OREGISTER
IREADWRITE] & ADDRESS |
ADDRESS T 7 y B |

o ;
DATA DATA
our T

7\ \ I
;:;H’ §CIL -‘L-CJ' iﬂ 8 E J\Qr

ALU DATA SOURCE
SELECTOR

" 5

g U

R 5
CARRY N ——t=| Ty
BEUNETION ALY
F -
—— I - -
1 .
A F
OUTPUT
ENARLE _-.| oUTPUT mu'n SELECTOR]
‘J\/L DATA OUT

MPR-004

Figure 13. Am2901A Block Diagram.

Data in any of the 16 words of the Random Access Memory
(RAM) can be read from the A-port of the RAM as controlled by
the 4-bit A address field input. Likewise, data in any of the 16
words of the RAM as defined by the B address field input can be
simultaneously read from the B-port of the RAM. The same code
can be applied to the A select field and B select field in which case
the identical file data will appear at both the RAM A-port and
B-port outputs simultaneously.

When enabled by the RAM write enable (RAM EN), new data is
always written into the file (word) defined by the B address field of
the RAM. The RAM data input field is driven by a 3-input multi-
plexer. This configuration is used to shift the ALU output data (F) if
desired. This three-input multiplexer scheme allows the data to
be shifted up one bit position, shifted down one bit position, or not
shifted in either direction.

The RAM A-port data outputs and RAM B-port data outputs drive
separate 4-bit latches. These latches hold the RAM data while the
clock input is LOW. This eliminates any possible race conditions
that could occur while new data is being written into the RAM.

The high-speed Arithmetic Logic Unit (ALU) can perform three
binary arithmetic and five logic operations on the two 4-bit input
words R and S. The R input field is driven from a 2-input multi-
plexer, while the S input field is driven from a 3-input multiplexer.
Both multiplexers also have an inhibit capability; that is, no data is
passed. This is equivalent to a “zero” source operand.
Referring to Figure 14, the ALU R-input multiplexer has the RAM
A-port and the direct data inputs (D) connected as inputs.
Likewise, the ALU S-input multiplexer has the RAM A-port, the
RAM B-port and the Q register connected as inputs.

AaMy < AaMy
M~ — o
o L] — <1 [|
N : | . : _ [1
. 5 | aworo
A WORD ' .
ADORESS | . 16007 B £ 81T 2PORT RAM g, [ADDRESS | o o o
: DaTaouT] Pt MU Pt -
#a >— | i
4 Ay Ay Ay Ay WE — _ _ ._
[oy oy [
E—H
AL
i ALATEH HEXTCH ar GREGISTER ain DESTINATION |— 7
e y ‘ DECODE
Ag Ay Ay Up & & By —<"s
_ [g o oy ay
oy
it | By
DATA
wpuTs | Oy
o 1 _ I
2in P 2% 2 SN 31 30N 1y l— g
it ot X MU MU MUK wx MUK
_ [["
: [[[-
: ALY x| e iy L] 3 5o 51 2 o W | R
laz—] FuscTioN A —<F
DECODE
ARITHMETIC LOGIC UNIT IALUY e
g —rl —%n e
? ovi
<, ‘o F [N [|—< 0w
o
Fao
180 Fa
Note: LSB is numbered "0"'; MSB is numbered 3%,
THREE
STATE
CONTROL
oF
MPR-005

Figure 14.

K./This multiplexer scheme gives the capability of selecting various

pairs of the A, B, D, Q and “0" inputs as source operands to the
ALU. These five inputs, when taken two at a time, result in ten
possible combinations of source operand pairs. These combina-
tions include AB, AD, AQ, A0, BD, BQ, B0, DQ, DO and Q0. Itis

Upparent that AD, AQ and AOQ are somewhat redundant with BD,

o

BQ and BO in that if the A address and B address are the same,
the identical function results. Thus, there are only seven com-
pletely non-redundant source operand pairs for the ALU. The
Am2901A microprocessor implements eight of these pairs. The
microinstruction inputs used to select the ALU source operands
are the lg, |; and |, inputs.

The two source operands not fully described as yet are the D input
and Q input. The D input is the four-bit wide direct data field input.
This port is used to insert all data into the working registers inside
the device. Likewise, this input can be used in the ALU to modify
any of the internal data files. The Q register is a separate 4-bit file
intended primarily for multiplication and division routines but it
can also be used as an accumulator or holding register for some
applications.

The ALU itself is a high-speed arithmetic/logic operator capable
of performing three binary arithmetic and five logic functions. The
I3, 4 and Is microinstruction inputs are used to select the ALU
function. The definition of these functions is shown in Figure 15.
The normal technique for cascading the ALU of several devices is
in a look-ahead carry mode. Carry generate, G, and carry propa-
gate, P, are outputs of the device for use with a carry-look-
ahead-generator such as the Am2902A ('182). A carry-out, Cp 4.4,
is also generated and is available as an output for use as the carry
flag in a status register. Both carry-in (C,,) and carry-out (C,+4)
are active HIGH.

SOURCE
OPERANDS DESTINATION
AB B 0
AD DO SHIFT LOAD Y-0UT
AQ Q0 uP RAM F
A0 D QO up RAM & Q F
DOWN RAM F
DOWN RAM&Q F
NONE NONE F
ALU FUNCTIONS NONE Q F
R+S RORS NONE i A
R-S RANDS NONE. .- -HaM 5
5-R REXORS
R EXNOR S
R AND S

Figure 15. Am2901A Microinstruction Control.

The ALU has three other status-oriented outputs. These are F3, F
= 0, and overflow (OVR). The F; output is the most significant
(sign) bit of the ALU and can be used to determine positive or
negative results without enabling the three-state data outputs. F5
is non-inverted with respect to the sign bit output Y. The F = 0
output is used for zero detect. It is an open-collector output and

'whenallF outputs are LOW. The overflow output (OVR) is used to

(-/. can be wire OR'ed between microprocessor slices. F = 0is HIGH

flag arithmetic operations that exceed the available two's com-
plement number range. The overflow output (OVR) is HIGH when
overflow exists; that is, when C,; 5 and C, 14 are not the same

polarity.

(H,/

The ALU data output is routed to several destinations. It can be a
data output of the device and it can also be stored in the RAM or
the Q register. Eight possible combinations of ALU destination
functions are available as defined by the lg, |7 and lg micro-
instruction inputs. These combinations are shown in Figure 15.

The four-bit data output field (Y) features three-state outputs and
can be directly bus organized. An output control (OE) is used to
enable the three-state outputs. When OE is HIGH, the Y outputs
are in the high-impedance state.

A two-input multiplexer is also used at the data output such that
either the A-port of the RAM or the ALU outputs (F) are selected at
the device Y outputs. This selection is controlled by the lg, |; and
Iz microinstruction inputs.

As was discussed previously, the RAM inputs are driven from a
three-input multiplexer. This allows the ALU outputs to be entered
non-shifted, shifted up one position (X2) or shifted down one
position (+2). The shifter has two ports; one is labeled RAM, and
the other is labeled RAM3. Both of these ports consist of a
buffer-driver with a three-state output and an input to the multi-
plexer. Thus, in the shift up mode, the RAM, buffer is enabled and
the RAMg multiplexer input is enabled. Likewise, in the shift down
mode, the RAM, buffer and RAM; input are enabled. In the
no-shift mode, both buffers are in the high-impedance state and
the multiplexer inputs are not selected. This shifter is controlled
from the lg, I; and lg microinstruction inputs.

Similarly, the Q register is driven from a 3-input multiplexer. In the
no-shift mode, the multiplexer enters the ALU data into the Q
register. In either the shift-up or shift-down mode, the multiplexer
selects the Q register data appropriately shifted up or down. The
Q shifter also has two ports; one is labeled Qg and the otheris Q.
The operation of these two ports is similar to the RAM shifter and
is also controlled from Ig, |7 and Ig.

The clock input to the Am2901A controls the RAM, the Q register,
and the A and B data latches. When enabled, data is clocked into
the Q register on the LOW-to-HIGH transition of the clock. When
the clock inputis HIGH, the A and B latches are open and will pass
whatever data is present at the RAM outputs. When the clock
input is LOW, the latches are closed and will retain the last data
entered. If the RAM-EN is enabled, new data will be written into
the RAM file (word) defined by the B address field when the clock
input is LOW.

Am2903 GENERAL DESCRIPTION

The Am2903 is a four-bit expandable bipolar microprocessor
slice that performs all functions performed by the industry stan-
dard Am2901A. In addition, it provides a number of significant
enhancements that are especially useful in arithmetic oriented
processors. The Am2903 contains sixteen internal working re-
gisters arranged in a two address architecture and it also provides
all of the necessary signals to expand the register file externally
using the Am29705 register stack. Any number of registers can
be cascaded to the Am2903 using this technique. In addition to its
complete arithmetic and logic instruction set, the Am2903 pro-
vides a special set of instructions which facilitate the implementa-
tion of multiplication, division, normalization and other previously
time consuming operations such as parity generation and sign
extension. A block diagram of the Am2903 is shown in Figure 16.

ARCHITECTURE OF THE Am2903

The Am2903 is a high-performance, cascadable, four-bit bipolar
microprocessor slice designed for use in CPU’s, peripheral con-
trollers, microprogrammable machines, and numerous other ap-
plications. The microinstruction flexibility of the Am2903 allows
the efficient emulation of almost any digital computing machine.

[

DATA IN
Ag_3 . % . 4 By 3
B ADDRESS ADDRESS 7 =]
RAM WRITE
ENABLE o WE
I 3
n DATA OUT DATA DUT
4
cP E LATCH
4
4
Dhg_3 4 o
(=] i_._._ By_3

N

B Ry_a v Sp-3 ¢

PR \ i .5

<F Fo_z

[N—y 510y

fa £3

| 353 T Y
ALL a

E3- | SHIFTER I‘ 4| SHIFTER I»—@

010y 4 r{’d

TEN 4
o— L =
lols g %
T
=3 EE
INsTRUCTION | * Vo3
DECODE ZERQ
-
t
%15. . =3
3 | — Voo
z it]
é GND
e —
MPR-030

Figure 16. Basic Am2903 Block Diagram.

The nine-bit microinstruction selects the ALU sources, function,
and destination. The Am2903 is cascadable with full lookahead or
ripple carry, has three-state outputs, and provides various ALU
status flag outputs. Advanced Low-Power Schottky processing is
used to fabricate this 48-pin LS| circuit.

All data paths within the device are four bits wide. As shown in the
block diagram of Figure 16, the device consists of a 16-word by
4-bit, two-port RAM with latches on both output ports, a high-per-
formance ALU and shifter, a multi-purpose Q Register with shifter
input, and a nine-bit instruction decoder.

Two-Port RAM

Any two RAM words addressed at the A and B address ports can
be read simultaneously at the respective RAM A and B output
ports. Identical data appear at the two output ports when the
same address is applied to both address ports. The latches at the
RAM output ports are transparent when the clock input, CP, is
HIGH and they hold the RAM output data when CP is LOW. Under
control of the OEg three-state output enable, RAM data can be
read directly at the Am2903 DB |/O port.

External data at the Am2903 Y |/O port can be written directly intou

the RAM, or ALU shifter output data can be enabled onto the Y I/O
port and entered into the RAM. Data is written into the RAM at the
B address when the write enable input, WE, is LOW and the clock
input, CP, is LOW.

Arithmetic Logic Unit

The Am2903 high-performance ALU can perform seven arithme-
tic and nine logic operations on two 4-bit operands. Multiplexers
at the ALU inputs provide the capability to select various pairs of
ALU source operands. The E, input selects either the DA exter-
nal data input or RAM output port A for use as one ALU operand
and the OEg and I inputs select RAM output port B, DB external
data input, or the Q Register content for use as the second ALU
operand. Also, during some ALU operations, zeros are forced at
the ALU operand inputs. Thus, the Am2903 ALU can operate on
data from two external sources, from an internal and external
source, or from two internal sources.

When instruction bits 1, I3, |5, |1 and lg are LOW, the Am2903
executes special functions. Figure 17 defines these special func-
tions and the operation which the ALU performs for each. When
the Am2903 executes instructions other than the nine special
functions, the ALU operation is determined by instruction bits l4,
I3, Iz and 14. Figure 18 defines the ALU operation as a function of
these four instruction bits.

Am?2903s may be cascaded in either a ripple carry or lookahead
carry fashion. When a number of Am2903s are cascaded, each
slice must be programmed to be a most significant slice (MSS),
intermediate slice (IS), or least significant slice (LSS) of the array.

The carry generate, G, and carry propagate, P, signals required
for a lookahead carry scheme are generated by the Am2903 and

are available as ontputs of the least significant and intermediate,)

slices.

The Am2903 also generates a carry-out signal, Cy, 4 4, which is
generally available as an output of each slice. Both the carry-in,
Cp. and carry-out, Cp,44, signals are active HIGH. The ALU
generates two other status outputs. These are negative, N, and
overflow, OVR. The N output is generally the most significant
(sign) bit of the ALU output and can be used to determine positive
or negative results. The OVR output indicates that the arithmetic
operation being performed exceeds the available two’s comple-
ment number range. The N and OVR signals are available as
outputs of the most significant slice. Thus, the multi-purpose G/N
and P/OVR outputs indicate G and P at the least significant and
intermediate slices, and sign and overflow at the most significant
slice. To some extent, the meaning of the C,, 14, P/OVR, and G/N
signals vary with the ALU function being performed.

ALU Shifter

Under instruction control, the ALU shifter passes the ALU output
(F) non-shifted, shifts it up one bit position (2F), or shifts it down
one bit position (F/2). Both arithmetic and logical shift operations
are possible. An arithmetic shift operation shifts data around the
most significant (sign) bit position of the most significant slice, and
a logical shift operation shifts data through this bit position (see
Figure 19). SIOq and SIO; are bidirectional serial shift inputs/out-
puts. During a shift-up operation, SIQg is generally a serial shift
input and S10; a serial shift output. During a shift-down operation,,
S10;is generally a serial shift input and SIOg a serial shift output.

The ALU shifter also provides the capability to sign extend at slice
boundaries. Under instruction control, the SOy (sign) input can
be extended through Yy, Y4, Y2, Y3 and propagated to the SIO;
output.

W

Q

Sl0g
Q Reg &
Hex Special ALU Shifter | Most Sig. | Other Shifter e
-) Ig 5 lg 15 Code Function ALU Function Function Slice Slices | SI0, | Function | QIO4 I:HOO WRITE |
(A) : F= S+Cp, if Z=L Log. Fl2—Y -
L L L L 0 Unsigned Multiply F=R4S4Cp il Z=H (Note 1) Hi-Z Input Fa Log. Q2—+Q | Input | Qg L |
N Two's Complement | F=S+Cp, if Z=L Log. Fiz—Y)
L L H L 2 Multiply FoReSiC, 1Z-H (Note 2) Hi-Z Input Fo Log. Q/2=Q | Input | Qg L |
: F . —— .
L H L L| 4 O"ﬁ;"g:".'r‘;z’ F=S+1+Cp, FosY Input Input | Parity | Hold Hi-Z | Hi-Z L |
Sign/Magnitude- F=8+Cp if Z=L FoY R " "
L H L H 5 Two's Complement | F=5+Cy, if Z=H (Note 3) Input Input Parity | Hold Hi-Z Hi-Z L
Two's Complement |F=S+C if Z=L Log. Fiz—Y . Y |
LoH H L8 il Last Cycle |F=S—RA—1+CnitZ=H| (Note 2) Hi-Z input | Fo | Log.Qi2»@ | Input | Qp L
T Single Length = . "y |
H L L a8 Normalize F=5+C, F—Y Fs Fs Hi-Z Log. 2Q—+0 Qq Input L
T -
H L H L A Normalize and F=5+C, Log 2F =Y R3¥Fj Fq Input | Log. 2Q—+Q | Q; Input L
First Divide Op.
Two's Complement |F=S+R+C, if Z=L —_—
H H L L c i Log. 2F—+Y Ry % F. F. Input | Log. 2Q—+Q Input L
Divide F=S-R-1+Cqitz=H| 0 AL I e b % -
Two's Complement |F=S+R+C, if Z=L K
H H H L E Divide, Correction F=5-R-1+C,itZ=H| F=Y¥ Fs Fy Hi-Z Log. 20-+0Q Qs Input L
and Remaindar
NOTES: 1. At the most significant slice only, the Cp,. 4 signal is internally gated to the Y3 output, L=LOW Hi-Z = High Impedance
2. At the most significant slice only, F5 ¥ OVR is internally gated to the Y5 output. H = HIGH ¥ = Exclusive OR
3. At the most significant slice only, S3% F3 is generated at the Y3 output. X = Don't Care Parity = SI03 ¥ F3 ¥ F; ¥Fy ¥ Fp
4, Opcodes 1,3, 7,9 B, D, and F are reserved lor future use,

Figure 17. Special Functions: Iy = I; = I, = I3 = I, = LOW, IEN = LOW.

b lg |13 | la | |4 | Hex Code ALU Functions ._E_’
5i0g S10y SI0g S10g
clholole 0 lg=1L Special Functions
lo=H Fi= HIGH Sip:‘i?i’cl:nl smmw

LiLjL|H 1 F = § Minus R Minus 1 Plus G, Sles fiteemosdians Stice
L|L|H]|L 2 F = R Minus S Minus 1 Plus C, Am2903 Arithmetic Shift Path

LI{L|H|H 3 F = R Plus S Plus Cj,

CIH[L|L 4 F=SPlsC, T 10, __EH__ si0,

LIH[L[H 5 F =S Plus C,

LIH[H]|L 6 F = R Plus Cy, Siie Positions

L|H|H]|H 7 F =R PlusCy Am2903 Logical Shift Path

HiL|L]|L 8 F; = LOW

H{LC|L|H 9 F; = A; AND S, MER-031
HiL[H|L A F; = R; EXCLUSIVE NOR §; Figure 19.

HIL|[H|H B F; = R; EXCLUSIVE OR S;

HIH[L|L c F; = R; AND §;

H{H|L|H o Fi = Ri NOR §; The instruction inputs determine the ALU shifter operation. Figure
HIH|H|L E Fi = Rj NAND §; 17 defines the special functions and the operation the ALU shifter
H|H|H|H F Fi = R OR §; performs for each. When the Am2903 executes instructions other
L~ LOW H = HIGH i~ 0103 than the nine special functions, the ALU shifter operation is de-

termined by instruction bits Igl;lgls. Figure 20 defines the ALU
shifter operation as a function of these four bits.

Figure 18. ALU Functions. Q Register

The Q Register is an auxiliary four-bit register which is clocked on
the LOW-to-HIGH transition of the CP input. Itis intended primar-

UA cascadable, five-bit parity generator/checker is designed into ily for use in multiplication and division operations; however, itcan

@

the Am2903 ALU shifter and provides ALU error detection capa-
bility. Parity for the Fy, Fy, F2, F3 ALU outputs and SIO; input is
generated and, under instruction control, is made available at the
SIOg output.

11

also be used as an accumulator or holding register for some
applications. The ALU output, F, can be loaded into the Q Regis-
ter, and/or the Q Register can be selected as the source for the
ALU S operand. The shifter at the input to the Q Register provides

T T | |
E 5104 Yy ¥2 ‘ ‘ Q Reg &
Hex | ALU Shifter | Most Sig. | Other | Most Sig. | Other | Most Sig. | Other | — Shifter

lg 1y lg lg | Code Function Slice | Slices | Slice | Slices | Slice | Slices Yy | Yg | S0 | Write | Function QIO |QIO,

L L L L) Anth. Fl2—=Y Input Input £y S0 Fy Fa | Fs Fo L | Hod Hi-Z | Hi-Z
[T U U A 7 | legre Input nput | SI0; | SI0; N Fr | Fo L Hoid HiZ | HZ

L L H L H Arith, Fi2—+¥ Input Input F3 | 50y Fy Fo L
'C L H H 3 Log. Flz—Y Input Inpul SI0; | 8K Fi e | L

L H L L 4 Fs¥ Input Input Fy | Fy Fo Paity | L

L H L H 5 Foy Fo Parity H

L H H L 6 Fay Fo | Panty H

L H H H 7 F—y Fo Parity L

H L L L B8 Arith. 2F =Y S0y Input L

H L L H| 9 Log, 2F =7 Si0g | mput | L -

H L H L A Aith, 2F =Y Si0yg Input | L Log 20-0Q Qg Input
'H L H H| B | Logar-y Si0g Ir:p_ui_? L Tlog 20=Q | Q3 | input

H OH L L = Fy Fo HiZ H | Hold H-Z | HiZ

H H L H o Fov [s Fr o |Fo Hi-Z H | Log 200 | Q3 | put

H H H L E SI0g—+Yp. ¥y. Yz Ys 50, | TN 1 S0y | SI0g| S10g i;u_("j'_i." I H-Z | HI-Z

H H H H | F | Fey F Fa F2 | F1 |Fo Mz | L | H Hi-Z | Hi-Z
Parity = Fg % Fo % Fq % Fg ¥ SI03 L =LOW Hi-Z = High Impedance
¥ = Exclusive OR H = HIGH

Figure 20a. ALU Destination Control for Ig or Iy or Iy or I3 or I = HIGH, IEN = LOW.

ALU RAM
OPERATION SHIFTER WRITE Q
up
SINGLE DOWN
LENGTH YES NC
SHIFT ARITH UP
ARITH DOWN
UpP up
LENGTH DoWN ves | DOWN
SHIFT ARITH UP up
ARITH DOWN DOWN
upP
Q-SHIFT PASS NO DOWN
RAM YES NC
RAM & Q YES LOAD
LOAD Q PASS NO LOAD
NONE NO NC
SIGN EXTEND S10g YES NC
NC = No Change

Figure 20b. Am2903 ALU Destination Control Summary.

the capability to shift the Q Register contents up one bit position
(2Q) or down one bit position (Q/2). Only logical shifts are per-
formed. QIO, and QIO; are bidirectional shift serial inputs/out-
puts. During a Q Register shift-up operation, QIO is a serial shift
input and QIO; is a serial shift output. During a shift-down opera-
tion, QIO is a serial shift input and QIO is a serial shift output.

Double-length arithmetic and logical shifting capability is pro-
vided by the Am2903. The double-length shift is performed by
connecting QIO; of the most significant slice to SIO; of the least
significant slice, and executing an instruction which shifts both the
ALU output and the Q Register.

12

The Q Register and shifter operation is controlled by instruction
bits Igl;lgls. Figures 17 and 20 define the Q Register and shifter
operation as a function of these four bits.

Output Buffers

The DB and Y ports are bidirectional I/O ports driven by three-
state output buffers with external output enable controls. The Y
output buffers are enabled when the OEy inputis LOW and are in
the high-impedance state when OEy is HIGH. Likewise, the DB
output buffers are enabled when the OEg input is LOW and in the
high-impedance state when OEg is HIGH.

The zero, Z, pin is an open collector input/output that can be
wire-OR'ed between slices. As an output it can be used as a zero
detect status flag and generally indicates that the Y_5 pins are all
LOW, whether they are driven from the Y output buffers or from an
external source connected to the Y3 pins. To some extent the
meaning of this signal varies with the instruction being performed.

Instruction Decoder

The Instruction Decoder generates required internal control sig-
nals as a function of the nine Instruction inputs, ly_g; the Instruc-
tion Enable input, IEN; the LSS input; and the WRITE/MSS in-
put/output. The WRITE output is LOW when an instruction which
writes data into the RAM is being executed.

When IEN is LOW, the WRITE output is enabled and the Q
Register and Sign Compare Flip-Flop can be written according to
the Am2903 instruction. The Sign Compare Flip-Flop is an on-
chip flip-flop which is used during an Am2903 divide operation.

Programming the Am2903 Slice Position

Tying the LSS input LOW programs the slice to operate as a least
significant slice (LSS) and enables the WRITE output signal onto
the WRITE/MSS bidirectional I/O pin. When LSS is tied HIGH, the
WRITE/MSS pin becomes an input pin; tying the WRITE/MSS pin
HIGH programs the slice to operate as an intermediate slice (15)
and tying it LOW programs the slice to operate as a most signifi-
cant slice (MSS). This is shown in Figure 21.

@

o

@

r

<
e}
2]

4 ADDRESS BUS B
4 BUS A
9 _ INSTRUCTION BUS
DA DB DA DB DA DB DA DB
| 1 I |
A A A A
B am2003 B amases B amasos B ama903
—]a, Qg ‘N Qg a, ay Q Qg f—o
——]5z Sg S3 S 83 Sg 83 So [
=] Cnig +5 +5 +5
WiNS WINSS WINSS WINSS
——ovr s — GF iss GF ss GF s
z _ Cp = z _Gp — < _ G — Z __Caf=— —
Y WE 1 v we Y WE Y WE
-1% H 4,}/ 2 4+ 2 a+
Chiz G2, P2 Cnsy G1. Py Cnix Go P cn
Am2802A Cn

MPR-531

Figure 21. Am2903 — 16-Bit CPU with Carry Look Ahead.

EXPANDING THE NUMBER OF Am2903 REGISTERS

The Am2903 contains 16 internal working registers configured in
a standard two port architecture. The number of working registers
in the ALU configuration can be increased by utilizing the
Am29705 16-word by 4-bit two-port RAM. Any number of
Am29705's can be connected to the Am2903 to increase the
number of working registers. Figure 22 shows a block diagram of
the basic Am29705. As is seen, the device consists of a 16 word
by 4 bit two port RAM with latches at the A and B outputs similar to
the RAM contained within the Am2903. Each of the latch outputs
has three state drivers capable of driving the DA and DB inputs of
the Am2903. The Am29705 is a non-inverting device. That is,
data presented at the inputs is stored in the RAM and when
brought to the RAM outputs, it is non-inverted from when it was
orginally brought into the device.

The technique for using the Am29705 to expand the number of
registers in the Am2903 can best be visualized by referring to
Figures 23 and 24 simultaneously. In Figure 23, the data bus
connections are shown such that the Am2903 Y output is used to
drive the Am29705 inputs. Here, we also assume this bus may be
tied to a data bus through a bi-directional buffer. In Figure 23, the
A outputs of the Am29705 are connected together and also
connected to the DA input of the Am2903. Likewise, the B outputs
from the Am29705 are also shown connected to the DB inputs of
the Am2903. In all cases, we are assuming 16-bit data busses.
Thus, four Am2903's are assumed and eight Am29705's are
assumed. As shown in Figure 23, one of the write enable inputs to
the Am29705 is tied to the latch enable input of the Am29705 and
these pins are also tied to the clock input of the Am2903. This
allows the latches in the Am29705 to perform identically to those
in the Am2903.

A -
ADDRESS

-
L] -

DATA IN
16 x4
RAM
A OUT WE B OUT
X NI

B
ADDRESS

MPR-532

13

Figure 22. Am29705 Block Diagram.

If we refer to Figure 24, we see the connections required to setup
the addressing for additional registers associated with the
Am2903. Here, three two-line to four-line decoders are used to
properly control the A address, B address and write enable sig-
nals to the devices. As shown in Figure 24, the four A address
lines are all tied in parallel between the Am2903 and the
Am29705's. The two-line to four-line decoder is used to enable
the appropriate output enable from the Am29705’s or switch the
EA MUX inside the Am2903 such that the proper register is
selected. The B address operates in a similar fashion in that the
four B address lines are also all tied together. Likewise, a two-line
to four-line decoder is used to properly select the output enable of
either the Am29705's or the Am2903 such that the correct source

< DATA BUS >
| BUFFER |
IN ——
LE
Am29705 WE
—— A-ouT B-OUT |—=—
IN Lo
LE
Am29705 WE
p——] A-ouT B-OUT |—=—4#
16 16
16
Am2803 cP
L—=1 DA-IN ouT DB-IN [=—
| CLOCK
MPR-533

Figure 23. Am2903 — Data Bus Cascading.

operand register is selected. In addition, a two-line to four-line
decoder is used to control the write enable signal such that only
one register is written into as a destination. This is controlled by
properly selecting the write enable of either the Am2903 or the
Am29705 as determined by the two most significant bits of the B]
address. u

If this technique is used properly, any number of Am29705's can
be used in conjunction with the Am2903. It may be necessary to
use either a three-line to eight-line decoder or perhaps even a
larger circuit to decode the more significant bits of the A and B
addresses. Likewise, the write enable signal must be controlled
so that the correct destination register will be written.

UNDERSTANDING BIT SLICE TIMING

Perhaps one of the most important aspects of designing with
either the Am2901A or the Am2903 is understanding the calcula-
tions required to compute the worst case AC performance. In
order to perform these calculations, we have selected a number
of standard Schottky devices and assigned minimum, typical and
maximum speeds at 25°C and 5V for use in these calculations as
shown in Figure 25. Certainly the design engineer should use the
exact specifications of the devices he has selected for his design
in order to perform the worst case calculations. What is intended
here is an understanding of the technique to perform these calcu-
lations and some method to allow a comparison of the Am2901A
and Am2903 in terms of their AC performance. Since at the time
of this writing the Am2903 is still being characterized, only the
typical AC data is currently available. Thus, all calculations will be
made using the typical AC times such that we can compare the
Am2901A with the Am2903. When final characterization data on
the Am2903 is available, the designer can then compute his
performance by selecting the appropriate temperature range and
power supply variations as required by his design.

Figure 26 shows the typical AC calculations for the functions
usually considered in an Am2901A design. These functions are
usually the speed for a logic operation, arithmetic operation, logic
operation with shift and arithmetic operation with shift. In each
case, we are computing speeds from the LOW-to-HIGH transition
of a clock through an entire microcycle to the next LOW-to-HIGH
transition of a clock.

OES —
—a=q A
Am29705 Bl l—— 2704
OEA WE — 1 DECODER
s
Lo per: 2
WY OE8 T 7 ,a B
27104 Am28705 B va o
DECODER OEA e
5
2] 3
AgAs [4 OEB 2704
7 A Am2903 gl DECODER
EA ad _
WRITE WE E \
TWO ADDRESS OPERATION
MPR-534

Figure 24. Am2903 — RAM Address Cascading.

€

‘ | Similarly, Figure 27 shows the same type of computations for an
Am2903 system. There is one very important distinction that
should be made in computing the timing of an Am2903 16-bit ALU
when compared with an Am2901A ALU inthatin the Am2903, the
shifter is at the output of the ALU and is followed by the zero

bdetector. Thus, in an Am2903 design, the flags are no longer

DEVICE & PATH MIN. TYP. MAX.
S Register
Clock to Output 9 15
OE to Output 13 20
Set-Up 5 2
S MUX
Data to Output 5 8
Select to Output 12 18
OE to Output 13 20
Microprogram PROM
Address to QOutput 30 50
OE to Output 18 25
Mapping PROM
Address to Output 25 45
OE to Output 18 25
Decoder
Select to Qutput 8 12
Counter
Clock to Q 9 13
Clock to TC 12 18
CET to TC 8 12
Data Set-Up 8 4
Load Set-Up 16 10
CEP or CET Set-Up 12 7
S-EXOR
IN to OUT 7 11
Am2922
Clock to Output 21 32
Data to Output 13 19
OE to Output 10 17
Data Set-Up 10 5
Am29811A
Input to Output 25 35
Am29803A
Input to Output 25 35
Am2902A
C, to Cn+x,y.z 7 11
G, PtoG,P 7 10
G, Pto Cpyx,y.z 5 7

Figure 25. Standard Device Schottky Speeds.

independent of the shift operation. This is easily seen in Figure

27.

By way of comparison, Figure 28 shows speeds for the four types
of operations for the Am2901A 16-bit system as compared with

the Am2903 16-bit system.

a)

D
¥
MUX MUX
Cn
STATUS CK
REG
D Cn+ Z &P
CK
cLOCK DATA AU Amz902A CARRY
Cn
+]
LOGIC OPERATION
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH1 | PATH2 PATH 3
S-REG | CPloQ 9 E] 9
20014 READ-MODIFY-WRITE 55 - -
20014 AB - Y = a5 -
20014 | AB - Zero - - 65 PATH 1
S-FREG | SET-UPD - 2 H PATH 2
ToTALms | &4 56 76 PATH 3 MPR-535
b)
D
¥
MUX MUX
STATUS
REG
CK | paTaQuT
CLOCK REG p CARRY
N
a
ARITHMETIC OPERATION
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3
SHEG CPioQ g 9 g
20014 AB to GP 0 0 40
29024 GP 10 Crayz 5 5 5
28014 SET-UP G, 40 = -
20014 Cplo ¥ 20 -
28014 Cp, 1o Zero - - a5 PATH 1
5-AEG SET-UPD 2 2 PATH2 — — -
|_TOTALns 54 7% 51 PATH3 —— T

Figure 26. Typical AC Calculations for the Am2901A.

16

D

c)
|
|
|
!
|
l{o
i
i Y
MUK MUx
STATUS CK [o
AEs 1L Cu+Z GF
CK
CLOCK nn'l;;gm Am2902A CARRY
Cn
a
LOGIC OPERATION WITH SHIFT
SPEED COMPUTATIONS
| OEVI_C_E__HO- DEVICE PATH PATH1 PATH 2 PATH 2
| s ReG cPoQ 9] E]
| 2801n AB 1o RAMp3 60 - -
| 5-MuUx Doy 5 -
29014 SET-UP RAMgs 15 - -
29014 ABlo Y - 45 -
29014 ABto Z - - B5 PATH 1
S-REG SET-UP D - 2 2 PATH 2
|_ToTALns 5 56 % PATH 3 MPR-537
d)
Y
MUx
o
gaTA OuT CARRY
TWO'S COMPLEMENT ARITHMETIC OPERATION REG cy
WITH SHIFT DOWN
SPEED COMPUTATIONS]
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3 a
5 - REG CPwQ 9]]
29014 AB 1o GP 40 &0 40
29024 GP 19 Cpinyz 5 5 5
2901A Cp to Fy, OVR 20 - -
S-EXOR IN - OUT 7 -
S-MLUX DtaY 5 - -
2901A SET-UP RAM; 15 - -
2901A Calo Y 20 -
2901A Cy to Zero - 5 PATH 1
S-REG SET-UP D - 2 PATH 2
TOTAL-ns 101 76 a1 PATH3 —— — — MPR-538

Figure 26. (Cont.)

17

e)

{o

DATA
REG

Mux
STATUS g
REG
[+]
cK
MAGNITUDE ONLY ARITHMETIC OPERATION cLock DAL uT CARRY
WITH SHIFT DOWN Cn
SPEED COMPUTATIONS i
DEVICE NO. DEVICE PATH PATH 1 PATH 2 M
S - REG CPoQ 9 9
29014 AB 10 GP 0 40
29024 GP 15 Gy 5 5
28014 Cp 10 Coas 10 = |
S-MUX DioY 5 -
29014 SET-UP RAM, 15 -
29014 Cp 1o Zoro - 35
S-REG SET-UP D - ~2 PATH 1
TOTAL-ns B4 91 PATH 2 MPR-539
Figure 26. (Cont.)
a)
1
DATA \
REG |
a (—
]
0 DADEY |{AB,1I s, 08 } 58,1
¥ T ¥
Mux | SHIFT i oK Ll I MUX
| Cyt 4 / L_
— '})
— ™ Am2908 o | see
| ove \\ / N
i N N " Cn
[p—l—
Il \
STATUS cK {
REQ b eyt z &b
cLock = Rt Amz902A CARRY
Cy
LOGIC OPERATION a
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3
s-mEG | cPua 3 9 s
2003 ABlY 56 56 56
2903 Yoz - 1% - | PATH1 — .
SREG SET-UP D H 2 - |
2503 SET-UP ¥ - - 8 | PATH 2
TOTAL:ns &7 | PATH 3 MPR-540

Figure 27. Typical AC Calculations for the Am2903.

18

-

b)
I b
DATA CK amClite o g 1~
REG -~ —AEn-, |
e R
o e
|
b DA, DB 28,1 0a, 08 | A8
¥ \ ¥
MUX SHIFT) CK CK \ swiET MUX
Cn+ 4 | WA
- ' Ly s
fT;a-_ \ .lm|£906 RN Am \\
| —— B . ——]
=N 730 Vet 0
,,—-—b V] —\] I \ \‘
' ¥ i] ’ :
STATUS cx i {
REG H |
[+] | |EntZ el E
~ |
cK L pvx J
cLOCK DATA T . AM2002A— = CARRY
ARITHMETIC OPERATION — 16 BIT a
SPEED COMPUTATIONS
| DEVICE NO. DEVICE PATH PATH 1 PATH 2] PATH 3
S-AEG cPioa s | s | s
2003 A Blo G, P | % | s 5
20024 G P10 Chayy: | 5 | 5 | s
2003 | Catev | 25 - 25
; 2903 | Cp 0 FLAG - a8 -
2903 YioZ 16 -
| S-REG SET-UP D 2 2 -)
| 2e03 SET-UP Y | 9
TOTAL-ns "3 { 10 | 104 MPR-541
c)
e
' |
[To D i
! DATA [— ‘
| REG .*_____Rac.jj |
{
|
) . — a
. a {i"_ — = {
|
L oA DB} fAB1 oA, D8 | 48,1 |
| | | v
e oK ek "’-—gm-,-
Ux IFT Mux
X NFE hg'\‘ e o
i Am2903 Am2903
e \ sHIFT | 8 | 8 8 8 |sHiFT
\ r Cn ¢
" =
H | Y RAM
e |L—=F [T
status | hEK L —————t—)
G
RE =] Cy+ 2 GF
oK
cLock AT ST Am2502A - CARRY
L
LOGIC OPERATION WITH SHIFT Q
SPEED COMPUTATIONS
DEVICE NO. DEVICEPATH | PATH1 | PATH2 PATH 3
S - REG CPwa a |] ' 9 |
2003 A B0, 6| B4 84
MU | oy 5 - 5
2903 Sty 13 13 13
2003 Yoz 8 18 - -
SREG SET-UP D F 2 - PATH 1 -
2003 SET-UP Y - - a PATH2 — — — —
TOTAL-ns 109 104 100 PATH 3 MPR-542
Figure 27. (Cont.)
19

d)

o e,
|
¥
| MUX
|
]
{
|
A
TWO'S COMPLEMENT ARITHMETIC OPERATION
WITH SHIFT DOWN — 16 BIT CK| pataout
SPEED COMPUTATIONS REG o CARRY
l_osvlca NO. DEVICE PATH PATH 1 PATH 2 PATH 3
| 5 - REG CPioQ [a 3 i
2903 ABWGP | 56 56 =]
290248 GP 16 Cayuye | 5 5
| 2903 Cp 1o 8104 21 -
| 2003 SI0s oY] -
2503 Gy 10 N, OVR ECl
| SEXOR IN to QUT 7
| s-mux DwY | - 5
| 2903 SI0z 10 Y
| 2903 Yol
| ze03 SET-UP Y PATHY — ———————
| SREG | SETUPD PATH 2
|_TOTALns PATH 3 MPR-543
e)
1o
DATA \
REG 1
¥
MuUx
STATUS
REG
o
DATA OUT
CLOCK HEG : CARRY
N
MAGNITUDE ONLY ARITHMETIC OPERATION l
WITH SHIFT DOWN
) SPEED COMPUTATIONS a
DEVICE NO. DEVICE PATH PATH 1 PATH 2
5 - REG CPIoQ 9 9
2003 ABHRG P | 56 56
| 29024 GP W Cpyyyr 5 3
2503 Crto Cpaa 21 21
S-MUX DY 5 | 5
03 SI03 to Y 13 | 13
2903 Yoz % -
SREG SET-UP D 2 | :
2803 SET.UR Y | 9 PATH 1
TOTAL-ns 127 118 PATH2 — — —— - MPR-544

Figure 27. (Cont.)
20

Functional Am2901A Am2903
Operation

Logic 76 83
Arithmetic 94 113
Logic with Shift 89 109
Two's Complement

Arithmetic with 101 151
Shift Down

Magnitude Only

Arithmetic with 91 127
Shift Down

Figure 28. Summary of Am2901A and Am2903 AC
Performance in a 16-Bit Configuration.

USING THE Am2903 IN A 16-BIT DESIGN

Perhaps the best technique for understanding the design of the
16-bit ALU is to simply take an example. Figure 29 shows a block
diagram overview of four Am2903’s with the appropriate shift
matrix control, status register, MAR and the usual interface to a
CCU and main memory. This block diagram represents the nor-
mal data handling path associated with a simple 16-bit minicom-
puter. If we expand this block diagram to show what would nor-
mally be considered to be the complete 16-bit central processing
unit, the block diagram of Figure 30 results. Here, we see the
Am2903's surrounded by a typical set of MSI support chips. In
addition, the block diagram shows a typical computer control unit
as described in Chapter 2 of this series. Thus, all of the blocks are

now in place to show a simple 16-bit microcomputer built using
the Am2900 family devices. The full design for such a machine is
shown in Figure 31.

Figures 31A, Figure 31B and Figure 31C detail the connection of
each IC used in this design. Quite simply, the design can be
described as follows. Figure 31A represents the microprogram
sequencer portion of the design. U1, U2 and U3 are the instruc-
tion register that receive a 16-bit instruction from main memory.
U4, U5 and U6 are the mapping PROMs used to decode the OP
code portion of the instruction to arrive at a starting address for
the microprogram sequencer. The microprogram sequencer is
the Am2910 and is shown as U7. The branch address pipeline
register is U8, U9 and U10 and can be enabled to the D inputs of
the Am2910 sequencer to provide the jump address from micro-
code. The pipeline register for the instruction inputs to the
AmM2910 is U14. This machine also has the ability to select the A
and B addresses for the Am2903 devices from the microprogram
as well as the instruction register and U11 and U12 provide this
capability as a part of the pipeline register. U13 is a two line to four
line decoder used as part of the control for the A and B address
select for the Am2903’s. U15 is part of the pipeline register and
provides both true and complement outputs for bit 11. U16 and
U17 represent a one of sixteen decoder whose output can be
applied to the DA bus to allow the implementation of all the bit
operations. These include bit set, bit clear, bit toggle and bit test.
U18 and U19 are PROM's that provide the ability to enter one of
thirty-two preprogrammed constants onto the DA bus.

Figure 31B is predominately the data handling portion of the
design. Here, U20 and U21 represent a data register that re-
ceives data from the data bus. U26, U27, U28 and U29 are the
four Am2903's that form a 16-bit register/ALU combination. U30
is the carry look ahead generator for the ALU section. U22, U23

2 4
1 2
1 2
S EN EN S
0 0
MUX MUX
H—{1 A 8 1{=——H
L |2 2 |=—08 L
51045 510y
SERIAL /0 PORT ~———=| QI0;5 DB
DA
PARALLEL 4-Am2903's ccu
110 PORT OVR Cy
STATUS Cn +4 A
REG N B
z INST
4
MAR LDI
DATA IN
MAIN ADDR
MEMORY RW
DATA OUT INSTRUCTION

MPR-545

Figure 29. Am2903 with Shift Mux and Status Register.

21

MPR-546

ADDRESS BUS

22

DATA BUS
8 INSTRUCTION 8 >
REGISTER
| 0P CODE SOURCE/DESTINATION 1 <
I REGISTER REGISTER I 4 4
_|l _ DATA IN DATA OUT
Nv . REGISTER REGISTER
8
MaP
Ll PROM
8 186
BIT
DECODER
ON
MAP [| cooe
MAP LicRoPROGRAM A|| — X CONSTANT
CONTROLLER PROM L]
- Am2910
" _ 7S — 1
L A L
PR 4 A
] G G
FUTURE L [Mux
EXPANSION
MICROPROGRAM MEMORY aE
1 i
o
20775 27513 88
PROM'S PROM'S I
SUPER SLICES
CONTROL
BITS 12
8
5E FIPELINE PIPELINE
REGISTER REGISTER
LL

REGISTERS

CONTROL
BITS

Figure 30.

L/.

€

and U24 represent the status register with the ability to save and
restore the flags in main memory. U25 is the condition code
multiplexer for the microprogram sequencer. U33, U34, U35 and
U36 represent the shift linkage multiplexers that tie together the
internal shifters within the Am2903's. U37 is part of the pipeline
register and provides both true and complement outputs of a
number of the microprogram bits. U38 is part of the carry in logic
control such that double length arithmetic operations can be
performed. U31 and U32 are the data out register that can be
used to accept data from the Am2903s and enable this data onto
the data bus. U39 and U40 represent the memory address regis-
ter and are used to hold the address provided from the CPU to
main memaory.

The microprogram store is shown in Figure 31C. Here, we have
used both the 512 x 8 registered PROM's and 512 x 4 non-
registered PROM's in this design. A total of 68 microprogram bits
have been depicted in this design. These are shown so that
maximum flexibility is achieved. In most typical designs some 10
to 20 of these bits would not be used. Figure 31C shows four
512-word by 8-bitregistered PROM's (U41, U42, U43 and U44). It
also shows nine 512-word by 4-bit PROM'’s represented as U45
through U53.

Perhaps the best way to review the design is to simply understand
the function of each of the microprogram control bits. If the pur-
pose of each of these bits is well understood, the design engineer
will be well along in understanding the design of the simple
minicomputer CPU presented here.

The Microprogram Structure

The microprogram for the design shown in Figure 31 is 68 bits
wide. The functions of the microprogram control bits are as fol-
lows:

Bits PLO The 9 instruction bits of the Am2903 super-

through PL8 slices.

Bits PL9, The IEN, EA, OEB control inputs of the

PL10, PL11 Am2903 superslices, respectively. PL11 is also
connected to the data-in registers (U20 and
U21) output-enable. This connection assures
that there will be no conflict on the DE pins.

Bits PL12 Select the source for SIO of the Am2903, both

through PL14
(12 through

for shift-up and for shift-down operations. The
following table summarizes the functions of

Microprogram Bits Qlo, Qlo,

17 16 15 (Shift-down) (Shift-up)

L L L 0 0

L L H SIO, SIO,

L H L QIO, Qlo,

L H H Carry Carry

H L L Zero Zero

H L H Sign Sign

H H L Not allocated Not allocated
H H H 1 1

Bit PL18

Bit PL19

Bit PL20

Bit PL21

Bit PL22

Bit PL23

Bits PL24
through PL27

Bits PL28
through PL31

When LOW, enables the MAR clock input, i.e.
the data appearing on the Y output pins of
the Am2903 Superslices™ will be clocked into
the MAR at the LOW-to-HIGH transition of
the clock pulse.

When LOW, enables the MAR output onto the
Memory Address Bus.

When LOW, enables the data output register
clock, i.e. the data appearing in the Y output
pins of the Am2903 Superslices™ will be
clocked into the data output registers (U31
and U32) at the LOW-to-HIGH transition of
the clock pulse.

When LOW, enables the data output registers
onto the Data Bus.

When LOW, enables the data-in register clock,
i.e. the data appearing in the Data-Bus will be
clocked into the data-in registers at the
LOW-to-HIGH transition of the clock pulse.

This is the Cl input of the Am2910 micropro-
gram sequencer.

This is a 4-bit wide field which can be used
either for the A-address, for the B-address or
for both A and B addresses of the Am2903
superslices.

This is a 4-bit wide field, which can be
used for either the A-address of the Am2903
superslice or to designate one of sixteen bits to
the DA inputs of the Am2903 superslice via the
Am2921’s (116 and p17).

pid) these bits.
Microprogram Bits Slo, SIo,

14 13 12 (Shift-down) (Shift-up)
L L L o] 0

L L H SI0, sio,

L H L Qlo, QIO,

L H H Carry Carry

H L L Zero Zero

H L H Sign Sign

H H L Not allocated Not allocated
H H H 1 1

Bits PL15 Select the source for QIO of the Am2903, both
through PL17 for shift-up and shift-down operations. The fol-
(n15 through lowing table summarizes the functions of

wul7) these bits.

Bits PL32 Select the source fof the Am2903 A-address,
and PL33 according to the table below:
Sits A-Address Source
33 32
L L Data Bus bits 0 through 3
L H Microprogram bits 28 through 31
H L Data Bus bits 4 through 7
H H Microprogram bits 24 through 27
Bit PL34 Selects the source of the Am2903 B-address,
according to the table below:
Bit
24 B-Address Source
L Data Bus bits 4 through 7
H Microprogram bits 24 through 27

Bit PL35

Bits PL36
and PL37

Is the C,, input of the least significant Am2903
via an Am74S157 mux (n38).

Affect the status register input signals, ac-
cording to the table below:

37

Bits

36

Next Carry Next Zero, Sign, Overflow

H
H

Previous Carry Previous Zero,

Sign, Overflow

Previous SIOq5 Previous Zero,

Sign, Overflow

Am2903 superslices' Output
Data Bus bits 0 through 3

Bit PL38

Bit PL39

Bit PL40

Bit PL41

Bit PL42

Bit PL43

Bit PL44

Bit PL45

Bit PL46

and PL47
Bits PL48

through PL50

Selects either the carry flip-flop or the PL35 bit
for carry in.

When LOW, enables the status register output
to the data bus bits 0 through 3.

Controls the output polarity of the one-of-six-
teen bit select logic.

When LOW, enables the Instruction register
(U1, U2, U3) clock. The data present at bits 0
through 15 of the Data-Bus will be latched into
the Instruction register at the next LOW-to-
HIGH transition of the clock pulse.

This is an output signal. When HIGH, it signals
the main memory that a memory read is re-
quested.

This is an output signal. When HIGH, it signals
to the main memory that a memory write is re-
quested.

Selects the source of the one of sixteen bit de-

coders (U16 and U17) . When LOW, the output

of the Am2919 register (U12) containing the pre-
viously latched microprogram bits 28 through

31 will be applied to the decoders. When HIGH,

the output of the Am2919 register (U3) con-

taining the previously latched Data-Bus bits 0

through 3 will be applied to the decoders.

Selects the Am2903 Superslices™’ DA port
source. When LOW, the output of the one of six-
teen bit decoder (U16 and U17) will be applied
to that port. When HIGH, the output of the
Am29771 PROM's (U18 and U19) will be ap-
plied to the Am2903 DA ports.

These are the RLD and CCEN control inputs
of the Am2910 sequencer, respectively.

These select the condition code according to
the following table:

Bits Condition Code Selected
50 49 48
L L L Carry
L L H Sign
L H L Zero
L H H Overflow
H L L
H L H Not Allocated
H H L
H H H

24

Bit PL51 Is the condition code polarity control. When
HIGH, the condition code selected will pass non-
inverted. When LOW, the selected condition
code will be complemented.

Bits PL52 Are the | inputs of the Am2910 sequencer.

through PL55

Bits PL56 This is a 12-bit wide field and it serves, usu-

through PL67 ally as the next microprogram address.How-
ever, the 5 |east significant bits of this field (bits
56-60) serve also as an address field of the

Am29771 “constant” PROM's (U18 and U189).

Some Sample Microroutines

Figure 32 shows the microprogram code for a few sample micro-
routines. Different addressing schemes are demonstrated with
the “ADD" operation. All the other arithmetic or logic operations
can be easily programmed by substituting the 14-14 field of the
Am2903 with the appropriate function. Since the main memory
address is generated by the Am2903 superslices, the internal
register No. 15 serves as the program counter.

The following is a description of some sample microroutines. The
reader should refer to the description of the microprogram bits
given earlier in this chapter and to the data sheets of the Am2910
sequencer and of the Am2903 superslice.

Microword INIT.

This microword should be at address 0 and when the machine is
reset, the Am2910 will start executing from here. The purpose of
this location is to reset the machine program counter (Register
15) to zero. Ultimately more microinstructions can be added,
should the necessity of other reset functions arise.

Bits 1-4 (Am2903 I4-14) being 8y will cause the superslices to
generate all zeroes at the F-points (internal). Bits 5-8 (Am2903
Is-lg) being Fy; will cause this data (all zeroes) to appear on the Y
outputs. Bit 9 (@) is LOW and therefore, WRITE will be LOW
and this data will be written into the internal register selected by
the B-address inputs. Bit 34 is HIGH; therefore, microprogram
bits 24-27 will be selected as B address source. Since Fy is in
these bits, all zeroes will be written into the program counter
(Register 15). Bit 18 is LOW; therefore, the data at the Y outputs
(all zeroes) wil be latched into the MAR at the next clock pulse.
Bits 36 and 37 are set such that the flags will be updated, namely
CY=N=0VF=0, Z=1.

Bits 42, 43 are both LOW so no memory reference signalis sentio
the main memory (the MAR is still in an undetermined state). Bits
52-55 (Am2910 I) are set to Eyy which will force the sequencer to
continue to the next sequential address (1) as the CI (bit 23) is
HIGH.

Bits 21 and 39 are both HIGH to ensure that there is no conflict on
the data bus though in this case one of them could be a DON'T-
CARE. Bit 38 could also be a DON'T-CARE as the carry is zeroed
by the ALU. Making a HIGH in bit 46 enables executing this
microstep without disturbing the Am2910 sequencer's internal
register which at power-up has no significance but may be impor-
tant, should a software restart be issued.

All the other bits are DON'T-CARES.

Microword FETCH

This is the first step in the machine instruction fetch routine. In this
step, the main memory is addressed by the MAR, aread signal is
issued (bit 42 = HIGH), and the machine instruction (mac-
roinstruction) is placed on the data bus by the memory. It is

9

o

'_)

€

:
|
|
!
2910 DA
PL 1 CCP CC CLEN RLD|CONS BIT | MMW MMR|iRE POL [FDOE CY=0 Flags
Number of Bits 12 4 1 3 1 1 1 1 1 1 1 1 1 1 2
Bit No. 55 D o . |
: 0 - o I~ @ w0] o - @ @© @ |
3 8 g v ¥ g1z 8|8 8 &
INIT X E X X X 1 X X 0 0 X X 1 0 2
FETCH X E X X X 1 X X | 0 T 0 X | 1 0 0
FETCH + 1 X T i et S | X X/ 0 01 X |1 0 0
ADD FETCH+1 [7 X X 1 1 X X| 0 110 x| 1 0 2
ADDIMM X E X X X 1 Xez ek e s et 0 0
ADDIMM + 1 [FETCH+1 | 7 X X 1 1 X X| o 110 X |1 0 2
ADD DIR X E X X X 1 X X| 0o 1|1 x| 1 0 0
ADD DIR + 1 X E X X X 1 X X| 0o o1 x| 1 0 0
ADDDIR + 2 |ADDIMM + 1| 7 X X 1 1 X X/ o 1|1 x| 0 0
ADD RR1 X E X X X 1| X X| 0o o1 X/|1 0 0
ADD RR1 + 1 X E X X X 1 X Xl o 1|1 x| 0 0
ADDRR1 +2|FETCH+1 |7 X X 1 1 X X| 0o 1|0 X|1 0 2
2903 2910 Y-D MAR 2903
C, B A R, Ry| CI [DDBEOE E|OE E |Q S OEBEA IEN Ig_g ly_4 Iy
Numberof Bits| 1 1 2 4 4 | 1 11 1|1 1|3 3 1 1 1 4 4 1
Bit No. S ~ =
8 3 42 38| ¥ s 822z w2 e 2 I oo
[I - I -
INIT b b s e e s X 1 X/ X 0|X X X X 0 F 8 X f
FETCH R . S T 1 1|/ 0 1|Xx X 0 X 1 X x X
FETCH + 1 1 TR 1 1 1/ 0 0|X X 0 X 0 F 4 0
ADD 0000 %X X[1 i 1 1/ 0 1|X X 0o 0 0 F 3 0
ADDIMM 1o e X e F ol 1 o 1 1| 0 X X 0 X 0 F 4 0
ADDIMM +1 [0 0 0 X X | 1 11 1/ 0 1|X X 1 0o 0o F 3 0 i
ADD DIR T ¥ Xl 0 1 1/ 0 X|X X 0 X 0 F 4 0 ;
ADDDIR+1 |0 X X X X| 1 1 1 1| X 0oflx X 1 X 1 X 4 o0 ,
ADDDIR+2 ([0 X 3 X F | 1 o 1 1|/ 0 0|X X X 0 1 F & X ;
ADD RR1 R Sy S X 1 1/ X o|x X X 0o 1 F 6 X
ADDRR1 +1|0 X 3 X F | 1 0 1 1/ 0 0|X X X 0 1 F 6 X
ADDRR1+2|0 0 2 X X | 1 1 1 1/ 0 1|X X 1 0 0 F 3 0
1. 4-bit fields in hex, others in octal.
2. X = Don't Care.

Figure 32. Example Microcode for Figure 31 Design.
25

latched into the instruction register (U1, U2, and U3) at the next
clock LOW-to-HIGH transition (bit 41 = LOW). Itis assumed that
if a relatively slow main memory is used, the clock is halted until
the data is stable on the data bus and the register set up times are
met. We will see in a later chapter how easy itis to implement this
requirement using the Am2925 clock generator. The same as-
sumption will also be made in a memory write cycle.

Bit 9 (Am2903 ﬁ} is HIGH; thus, we don't care what the ALU
does during this microstep. We prevent the flags from changing
by setting bits 36-38 LOW. Also, the registers atthe Y output have
the E input HIGH (bits 18, 20). Bits 21 and 39 are both HIGH; thus,
the data bus is free to accept data from the main memory (bit 42 is
HIGH, signaling memory read request). The MAR is enabled to
the address bus (bit 19 = LOW) and at the next clock, the
macroinstruction will be latched into the instruction registers (bit
41 = LOW). The Am2910 sequencer will continue to the next
instruction (bits 52-55 = Ey).

Microword FETCH + 1

This is the second step in the macroinstruction fetch routine. The
instruction already resides in the instruction registers U1, U2 and
u3).

The Am2910 sequencer receives a JUMP MAP instruction (bits
52 though 55 = 2). The next microinstruction will begin to execute
the present macroinstruction — according to the mapping PROM.

We use this microstep to update (increment) the program counter
(Register 15). Bit 34 being HIGH, microprogram bits 24-27 (=Fy)
will be the B address. The Am2903 OEB and |y are LOW, there-
fore, the contents of Register 15 will serve as the S operand for
the ALU. C,, being HIGH, a 4 in the |;-14 field will increment this
value. IEN = LOW with I5-1g = F will write this (incremented) value
into the same register (R15). At the same time, the MAR is also
updated (bit 18 = LOW).

We could update the program counter and the MAR in the previ-
ous microstep (location FETCH), but then we had to leave the
ALU idle during this microcycle. By adopting the present scheme,
we can overlap the first step of the macroinstruction fetch routine
{the memory-read cycle) with the execution of the last step of the
previous macroinstruction — provided the memory and the data
bus are free to perform it. The JUMP MAP cycle is always neces-
sary — and that is why we prefer to update the PC at this step.

Microword ADD

This is a sample register-to-register operation. The two operands
reside in the internal registers pointed to by the two 4-bit fields of
the macroinstruction:

15

8 7 4 3

1st Operand and
Destination Register
Number

2nd Operand

OPCODE Register Number

Bits 32-33 are set LOW, instruction register bits 0-3 are selected
as A address. Bit 34 = LOW selects instruction register bits 4-7 as
B address (see Fig. above). Bit 1 {lp), bit 10 (EA) and bit 11 (OEB)
are also LOW; therefore, the contents of the selected registers
will be presented to the ALU's R and S inputs. Bits 1-4 (11-14) = 3,
the ALU will perform:

F = R plus S plus C,.
Note that bit 356 and 38 are LOW. With I5-Ig (bits 5-8) = F; and TEN

(bit 0) = LOW, the result will be written into the internal register
pointed at by the B address lines.

26

Bits 18 and 20 are HIGH and inhibit the MAR and the data out
registers from being affected, while bits 36, 37 (=2) allow the
flags to assume values according to the result of the operation.

During the execution of the function required (ADD in this exam-

ple) we fetch the next OP CODE from the main memory. The '|

MAR is enabled to the address bus (bit 19 = LOW) and a memory
read is requested (bit 42 = HIGH). Atthe end of this microstep the
next macroinstruction will be latched into the instruction registers
(bit 41 = LOW).

The Am2910 sequencer is instructed to select the pipeline regis-
ter bits 56-67 as the next microprogram address (bits 52-57 = 7,
bit 47 = HIGH) where the location of FETCH + 1 (2 in this
example) is written. The next step will be JUMP MAP and update
PC.

Microword ADD IMMEDIATE

This 2 step microroutine adds the contents of an internal register,
pointed at by bits 0-3 of the macroinstruction with its second word,
placing the result into the internal register pointed at by bits 4-7 of
the OPCODE.

15 8 7 43 0

Result
Register Number

2nd Operand

OPCODE Register Number

First word of the macroinstruction

15 0

DATA (1st Operand)

Second (next consecutive) word of the macroinstruction

The first step is to read the fitst operand from the memory (bit 19
= LOW, bit 42 = HIGH) and to latch it into the data-in register
(U20 and U21) (bit 22 = LOW). At the same time the ALU updates
(increments) the program counter (register 15) and the MAR (bit
18 = LOW). (Compare the location FETCH + 1). The Am2910
sequencer will continue to the next microprogram address (com-
pare to location FETCH).

Location ADDIMM + 1 is the second step of this macroinstruc-
tion. Itis very similar to location ADD, the only difference is that bit
11 (OEB) is HIGH, selecting the Data-in register as source for the
ALU's S operand. The same macroinstruction fetch overlap
technique is used again.

Microword ADD DIRect
This is the starting location to execute a macroinstruction where
the second word is the address of the operand:

15 8 7 43 0

Result
Register Number

2nd Operand

OPCODE Register Number

First word of the macroinstruction

C

€

Address of the 1st operand

Second (next consecutive) word of the macroinstruction

The first step is to read the second word of the macroinstruction
into the Data-in register. This microword is identical to the one
written at location ADDIMM.

Microword ADD DIR + 1

The Data-in register now contains the address of the operand.
We have to transfer it into the MAR.

With Ig (bit 0) LOW and OEB (bit 11) HIGH, the ALU’s operand will
be the DB bus, i.e., the Data-in register. l4-l4 (bits 1-4) = 4 will
pass this input to its output, as Cy, (bit 3) is LOW. With 1EN (bit9) =
HIGH, the WRITE line will be HIGH too, assuring that the internal
registers maintain their contents. Since |s-lg (bits 5-8) = Fy, the
ALU output will appear on the Am2903 Y pins. This data which is
actually the operand address and will be transferred into the MAR
at the next clock cycle. The Am2910 sequencer continues to the
next consecutive microstep.

Microword ADD DIR + 2

Now we read in the operand from the main memory. The MAR is
enabled to address bus (bit 19 = LOW), a memory read signal is
issued (bit 42 = HIGH) and the data-in register's clock is enabled
(bit 22 = LOW). At the next LOW-to-HIGH transition of the clock,
the operand will be placed in the data-in register.

Meanwhile, we need to restore the address of the next mac-
roinstruction in the MAR. Bits 32-33 = 3 select microprogram bits
24-27 as the A address (an Fy is written there); therefore, the
internal program counter will be addressed, as EA (bit 10) =
LOW. The ALU performs an F = R + C,, with C,, (bit 35) LOW,
thus passing the program counter contents to the output. IEN (bit
9) = HIGH prevents disturbance of internal Am2903 registers and
bit 18 will enable the MAR to receive the next macroinstruction
address.

Note that the situation now is exactly the same as after the first
step of ADD IMMediate. The operand is in the data register and
the MAR points to the next macroinstruction. Therefore, the
Am2910 sequencer will address, as the next microstep, location
ADDIMM + 1. The step after this will, of course, be FETCH + 1. A
total of 5 microsteps were needed to execute this macroinstruc-
tion but it occupies only 3 microprogram locations.

It is worthwhile to note here that by adding two more Am2920
registers between the Data-bus and the Address-bus and a
couple of control-bits in the microprogram, we could shorten the
microprogram by one step. In this design we chose notto do soin
order to demonstrate the Data-bus to Address-bus path through
the ALU.

27

Microword ADD RR1

The macroinstruction to be excuted here points to the register in
which the first operand is written, and also into which the result
should be written. The second 4-bit field of the OP-CODE (bits
0-3) points to the register in which the address of the second
operand is stored.

15 87 43 0

1st Operand and
Result Register
Number

2nd Operand’s
Address Register
Number

OPCODE

Bits 32 and 33 are LOW. Therefore, instruction register bits 0-3
will form the A-address. Now we take the contents of this register
and place itin the MAR exactly the same way as we did inlocation
ADD DIR + 2 with the program counter. The Am2910 continues.

Microword ADD RR1 + 1

Here we fetch the operand and place it in the Data-in register. At
the same time, we restore the program counter into the MAR.

Microword ADD RR1 + 2

Bits 32, 33 = 2 and instruction register bits 4-7 serve as the
A-address. Bit 34 = LOW; the same instruction register bits serve
as B-address, too. Note, that OEB (bit 11) is HIGH; therefore, the
ALU R-source will be the Data-in register and the S-source will be
the register addressed by A-address. The result (sum), however,
will.be written to the correct register, as 1EN (bit 9) is LOW.

At the same time, the next macroinstruction is fetched in the
usuall oooverlapping way and the next microinstruction to be
excuted will be at location FETCH + 1.

Summary

In this design shown in Figure 31, we have demonstrated some of
the addressing schemes mentioned in Chapter 1. We used the
ADD instruction throughout these examples, but any other arith-
metic or logic instruction can be executed, in exactly the same
manner by changing the microcode bits 1-4 to the appropriate
ALU code.

The reader is encouraged to write several microcode-lines to
execute the other addressing modes mentioned in Chapter 1. He
will discover that when the result of the macroinstruction is to be
written into main memory, the overlapping instruction-fetch is not
feasible. In some cases, when the MAR no longer contains the
Program Counter value, an additional microstep is needed in
order to restore the Program Counter into the MAR. The reader is
again encouraged to modify location FETCH in order to save this
additional microstep.

Appendix

Throughout Chapter 3, a number of AC calculations have been
made to show typical speeds for an Am2901A and Am2903 16-bit
ALU configuration. This Appendix shows the latest SWITCHING
CHARACTERISTICS for the Am2901A and Am2903.

The typical data on the Am2301A shown in this Appendix super-
sedes that shown on page 2-12 of the Am2900 Family Data Book
dated 4-78 (AM-PUBO0O03). The only difference between the data
shown in the typical column of the switching characteristic and
this Appendix appears in Table 3. The typical carry in set-up time
should be 40ns.

28

The typical switching characteristic data for the Am2903 as

shown in this Appendix supersedes the data presented in the,

Am2903 Bipolar Microprocessor Slice/Am2910 Microprogram
Controller Data Booklet dated 3-78. Here, a number changes
have been made to the table for both the combinatorial propaga-
tion delays and the set-up and hold times.

Should any questions arise concerning the switching characteris-
tics for either the Am2901A or Am2903, please do not hesitate to
contact the AMD factory and ask for Bipolar Microprocessor
Marketing or Bipolar Microprocessor Applications.

"

o

€

Am2901A — (MAY 18, 1978)

ROOM TEMPERATURE
SWITCHING CHARACTERISTICS
(See next page for AC Characteristics over operating range.)

Tables |1, II, and Ill below define the timing characteristics of
the Am2901A at 25°C. The tables are divided into three types
of parameters; clock characteristics, combinational delays
from inputs to outputs, and set-up and hold time require-
ments. The latter table defines the time prior to the end of the
cycle (i.e., clock LOW-to-HIGH transition) that each input must
be stable to guarantee that the correct data is written into one
of the internal registers.

All values are at 25°C and 5.0V. Measurements are made at
1.5V with V; = 0V and V| = 3.0V. For three-state disable
tests, C, = 5.0pF and measurement is to 0.5V change on
output voltage level. All outputs fully loaded.

TABLE |
CYCLE TIME AND CLOCK CHARACTERISTICS
TIME TYPICAL |GUARANTEED

Read-Modify-Write Cycle

(time from selection of

A, B registers to end of 55ns 93ns

cycle)
Maximum Clock Frequency to

Shift Q Register (50% duty 40MHz 20MHz

cycle)
Minimum Clock LOW Time 30ns 30ns
Minimum Clock HIGH Time 30ns 30ns
Minimum Clock Period 75ns 93ns

TABLE 1l

COMBINATIONAL PROPAGATION DELAYS (all in ns, C|_ = 50pF (except output disable tests))

2. If the B address is used as a source operand, allow for the A, B source” set-up time; if it is used only for the destination address, use the

B dest.” set-up ume.

Db W

Where two numbers are shown, both must be met.
Tt L’ is the clock LOW time.

DY 0 is the fastest way to load the RAM from the D inputs. This function is obtained with | = 337.

. Using Q register as source operand in arithmetic mode. Clock is not normally in critical speed path when Q is not a source.

29

TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V

To Shift Shift

Output _ _|F=0 OQutputs _ _|F=0 Outputs
From p Y | F3 |Ch+a|G,P|RL=|OVR Y | F3 |Cph+a| G, P |RL=|OVR
Input 270 RAMol: Ao 270 ANy~ %9

RAM3| Q3 RAM3| Q3
ALB 45 45 45 40 65 50 60 — 75 75 70 59 85 76 90 =
D (arithmetic mode)| 30 30 30 25 45 30 | 40 — 39 37 41 31 55 45 59 =
D(lI=X37) {Note 5}| 30 30 - = 45 40 - 36 34 - = 51 - 53 =
Cn 20 20 10 — 35 20 30 27 24 20 - 46 26 45 T
1012 35 35 35 25 50 40 45 - 50 50 46 41 65 57 70 —
245 35 35 35 25 45 35 45 e 50 50 50 42 65 59 70 —
lg78 15 = - - = = 20 20 26 = - - - 26 26
OE Enable/Disable |20/20] — - | = | = | - - | = |l30/33] - | - SHER — | = =
A bypassing it _ _ o _ _ - = - _ _ -~
ALU (I = 2xx) = i
Clock _4 (Note6)| 40 | 40 | 40 | 30 | 65 | 40 | 65 | 20 || 52 | 52 | 52 | 41 | 70 | 57 | 71 | 30
SET-UP AND HOLD TIMES (all in ns) {(Note 1) TABLE Il
TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V
From Input Notes
Set-Up Time Hold Time Set-Up Time Hold Time
AL B 2,4 40 93
Source 3,5 tpwl +15 0 towl + 25 0
B Dest, 2,4 tpwl + 15 0 tpwk + 15 0
D (arithmetic mode) 25 0 70 0
D (I = X37) (Note 5] 25 0 60 0
Ch 40 0 55 0
012 30 0 64 0
l345 30 0 70 0
l678 4 tpwk + 15 0 tpwl + 25 0
RAMg, 3, Qp, 3 15 0 20 0
MNotes: 1. See next page,

A. Am2903 SWITCHING CHARACTERISTICS (TYPICAL ROOM TEMPERATURE PERFORMANCE) — (MAY 18, 1978) \J

Tables IA, IIA, and IlIA define the nominal timing characteris-

tics of the Am2903 at 25°C and 5.0V. The Tables divide the TABLE IA — Write Pulse and Clock Characteristics
parameters into three types: pulse characteristics for the y)
clock and write enable, combinational delays from input to Time '
output, and set-up and hold times relative to the clock and Minimum Time CP and WE both LOW 15

write pulse. to write "
Measurements are made at 1.5V with Vi = OV and V| = Minimum Clock LOW Time 15ns

3.0V. For three-state disable tests, C, = 5.0pF and mea- e)

surement is to 0.5V change on output voltage level. Minimum Clock HIGH Time 35ns

TABLE IlIA — Combinational Propagation Delays (All in ns)
Outputs Fully Loaded. CL = 50pF (except output disable tests)

To Output | N SI0g
From Input —— Y | Chs | GP [(85Z| N | OVR | DB | WRITE | QIO QIO; | SIO; | SIO; |(Parity)
A, B Addresses | | -
(Arith. Mode) 65 | 60 56 | 64 70 I 65 69 87
A, B Addresses |

' - - - - 55

(Logic Mode) 56 46 56 33 64 81
DA, DB Inputs 39 | % | 30 | - [4 | s | - - - 39 | 47 | 60
EA 8 | 33 26 - 3% | 4 - - - 36 41 | 58
Cn 25 | 21 - - 20 | - - - 21 25 48
lo a0 | 3 24 - @ - 15(1) - 41 39 63
laaze | 5 | 45 | 22 - s | s - 17(1) - 45 | 51 68
ls765 %5 | - - - | - - | - 21 2229(2) |2417(2)| 2017(2) | 24117(2)
IEN - - - N - - - 10 | - - | - -
OEB Enable/Disable T - - | - - 12115(2) - | - - - - |\)
OEY Enable/Disable [14/14(2)| — . - - - | - - - - - | - |
SI0,, SI0; 13 sl - -] - - - - - 19 20
Clock 58 57 a0 | - 56 72 24 - 28 56 63 76
Y - - - e | -] - - - - - -
MSS %5 | - 25 | - | 5| 2 - | - - 2 27 24

Notes: 1. Applies only when leaving special functions.
2. Enable/Disable. Enable is defined as output active and correct. Disable is a three-state output turning off.
3. For delay from any input to Z, use input to Y plus Y to Z.
TABLE IllIA — Set-Up and Hold Times (All in ns)
CAUTION: READ NOTES TO TABLE lil. NA = Note Applicable; no timing constraint.

HIGH-to-LOW LOW-to-HIGH

Input “::ﬂ:i':sspi:?\ta:o ' Set-up Hold 1 Set-up Hold Coinment
Y 1 clock ' NA NA 9 3 | TostoreYinRAMorQ |
WE HIGH Clock 5 Note 2 | Note 2 0 To Prevent Writing
WE LOW | Clock § NA NA 5 | o To Write into RAM |
A.B as Sources . Clock 19 -3 NA .' NA See Note 3
B as a Destination Clock and WE both LOW -4 Note 4 MNote 4 -3 'I‘I;:;\g:tr?egataa :géyreigéo

| QI0g, QIO, Clock ' NA NA 10 -4 To Shift Q _L\J

lg765 Clock 2 Note 5 Note 5 -18
IEN HIGH Clock 10 Note 2 Note 2 0 To Prevent Writing into Q
1EN LOW Clock NA NA 10 -5 To Write into Q

30 \)

\ DATS
wl =] e[=] =] = -
&|&| 88| 5| 5S|4 g
cLOCK D7 Dg D5 Dy Dy D2 Dy Dy L
cP cP
Plgy 25 ul
OE Am25LS377 E
Plag
OEW
Q; Qg O5 Oy O3 Oz G; Gy w3 W
=
-
A7 Ag Ag Aq Az Ap Ay Ag A7 Ag A Ag Az Az Ay Ag A7 Ag Ag Ag Ag Ay Ay Ag Wi Wa
€5, 55 t5; L—cp
u4 us us e
Am27521 & Am27521 e Amz7S21 =Y = = e
&3 e
2 &5, ts5; sew
03 Q2 o L+ 5} 0z 0, Oy 03 0z =] Og CLOCK. Plyy D;
J J J : v
PLaz o
b
[!
CP ¢ RLD CCEN Yy
MAP Yo f— YAg
¥y — va,
z" ¥a b— Yaq
n‘ AR it R
D’*’ Yo b— YAy
& ¥
o uz s |— vas
og Amz910 gl ==ae
Yy f— va;
Dg Yo f— vag RESET
b7 .
Dg la
Dy Iz
Dig —_—
Dqy Wph—
FL
B 8l 8] 3 2 3 g 8 Bl 2| 5] 8
N PR T SR v e o |
alajala Glalo|o ojajajo
Lol 2l & | | I 1
Y3 ¥a ¥y Yo Q3 Q2 0 Qp ¥3 Y2 ¥y Yp Q3 Gy Oy O Y3 Yz Y2 Yg Q3 Qp @ Qg Ry Age-Ap Ay Ay
us as us o uto O uts 5
CLOCK :
Am2918 o Amz918 e Am2518 n 27519
Dy Oy Dy By Dy D Dy DOg Dy D; D; Dy 03 0, 01 Oy 03 0, 04 Oy
b o e p=s gl |
I~ y -] o - =1 - (=] o T x| <
e e E e B Bl gl 5% 3|z|a[a] 5]|5]5]a
MICRO BITS \

Figure 31

us

o] w| .= o o
o o o o -] a a
D Dy Dg Dy Db Dy Dy Bl
i cp e DEW
Am2919 E Am2919
e oY ——
W Y3 Yz Yy Yp Wi WaWi Wy Y3 Y2 Yy Yo
Ay =
Ay
Aa
Ag
By
By
By
By
Wg Ya Y3 ¥; Yo WaWa Wy Wy Y3 Yz Y, Y Pl
cP GEW
Uit z vi2
Am2e13 iy AmE919
OV OEY L1y,
D, D Dy Dy Dz Dy Dy —l
: 1Y, Plaz
1A
1
wz Plyy
5l 9 A 3 s 1B
S P f w3 | 430 | w209 u28 nm“;‘”
MICRO BITS — v, =y L=
w =]l
slE|a|
ES ES 4] 2 28 f—
cLock | 938 D2aD1a D05 D3, D2, D14 DO, =
gh uta
2 Am25L5399
Q3 G Q Qg
PLss = PLap
=
Plsa | [I
Plss
Ploz T Dy € B A E;E;E; EyPOL C B A EgEy Ez EPOL | puy,
ol uts us OF; w7 OE;
cLOCK
= Am25LS175 Am2921 5 Am2a21 o
Qy a Y; Yg Ys Yg Y3 Y2 ¥y Y Yo Ve Yg ot Yo Yy Yp
PLy, I =
PLii o B i e E B s ol sl | s
f] HEEEEHEEE HHBEEE
DA BUS
Ay Ay Ay Ay Ay
uts = PLs
27519
03 0z 0, Og 03 0; 0y Op
I|&| L)L L)]S
SEEE EE
DA BUS

MPR-547

DATA BUS

=l &l -] & Dy | Dy | 0 Dya|@yp| Da| Da
BB .si + |3| 2 n| a| sl |
D; Dy DOy Oy Dy Dy Dy DOy
uzn
CLOCK ce e
TR _GE Yy ¥g N5 ¥i ¥z Y3 ¥y W
P I
PL.
08 BUS
OALDA
PFIPELINE PLy-PLas
Ay
BBy
EEFEFEER 20855 £ 8
DA, DA; DA, DA, DB, DB DB, DMy DA; DA; DA, DA, DB; OB; DB
PLg—] o Plg—] 1
Py PLy—] 1y
oY ;b Plged %
[T Pyt
z PLy— 1l ::.— :
Pls — ks 5 —1
avE
——-[r" l Pl — g Pl — e
g 1C3 13 1C [risidy ok
230, 20,26 163163 16,16, 63 205 I, 2y TG IGTICo) Lo My —{k Plg—]lk
FLay
uzz g Ag —14g Ao —1 Ao =
AmTas1sy 16 AmT45153 16 P e e a—a, e
26 20 ng — A2 Az —Jay
2 s 2y s FYe Ay —| Ay
By — = By —{ g
8 —1 By By —
By — Bz oy —{8:
— A
= =18]
3 o =z W e [T an, 1,
By 0 [— 510y 10y 503
CH +4 N F
ovF,
L
s a1 ovR R
cLock P A28 & o iGN =L I
a5 = E == —1z .
Y3 p ¥y Yo Gy 0301 G SEBE v s EBE
2 s] = FEas
ol b o
3
- Flig
P
cLom—| T LT
w48 ce G
L)]
a9
SR o . TTTd
5 o | [
s Eot =
uzs G CHTIE
Amagzz Oy &
oy o
¥ o
o; PIPELINE
GO _RE_WE CLOCK.
Y
sH
EE amasig
WE cP AiE GLROE i nﬂﬁcbﬁmﬁ ¥ i WE <P RE CLA OF X
B
] uzs L 34 u3s
° Amesz —c AmasaE —e pre—ry
oL POL
"2 0; 0 b5 04 03 03 01 0 [B D5 04 By Ba By Dy D Bs 0. D30 O
= o -

uls

w7

nia

a2

\ MICHOPROGRAM BITS

DATA BUS

=T=lal=l=1 =izl = rs R EBE
mualusn‘]nglnﬂn,]w‘ A R s S e MGG B B EG
Oy Dg Dy Oy Oy B 0y Dy
uzi
i Am2uzy
CLR DE_E o A [O N o i s e
o TR
e o . o ? o
Itk & R H Fe LE el
Dy DAy DA; DAy DAy D8y DB; DBy DBy DA DAz DA; DAy DBy 0B; DB, DB,
Plg—] Iy Py —t
PLy— PLy — Iy
Pla —1 12 Pl iy
g —fn Ply —{ 13
= | PLy — I,
:.. k nr: |: L Y. ¥g Vs Ya Y3 Y2 ¥y g Yr ¥ ¥5 Ya ¥3¥2 V1 Vg
s — s = CiA TR
Plg—1 Ig e (1 cLock o us P usz
P Pl 4k TE AmzE20 3 Am920
Ply —] I Flg — ks AT T
s B A b ©7 D Ds By By Dy By Oy D7 Dg Ds Dy D3 D3 By Dy
= |
] - Rl =,
Ama90:
Ay — Ay Ay —1 Ay
Ay —t Ay Ay —] Ay
Ay] By By —q By
Ay By B — By
A —{ By B, {8,
e E By —18y
o [T QK 00y iy
540, 8105 w0y s10, 0,
cN T L] 3 cN
o= —F =3 g WES
] — z = z s =
e | L sEEBE w | L ssEBE
=t e =
ST
¥-BUS
EEE] HII i . EEEEEEEE s[=[=] =] =] =]=]=
Tkl = F e
:n b E Cn D; Dg Dg By @ Oz D, Oy 7 Dg Dy D; Dy Oy Oy Og
cP CP
uz TR wo
PIPELME Am2920 o Amz520
5L ¥7 ¥p Vg Ya Ya ¥z a Vo Y ¥s Ya Y3 ¥z ¥y Yg
ol 2l =l zli= HEHEEB
iR R £l |22
al=lal=l=|2|=]|= I I
£ e Jead £ ud a
£ g g § g
W P RE COR OF ¥ T3 03 Op Gz Gy @ Gy Y ADD BUS
Plys 1
L uwir 1Y [
i C Am2ery AmISLEITS 18 g
POL 8 AmT4S1ST
Dy DOg Oy Oy Dy O Dy O Dy . D Dy DOy
CARRY
PL
i b e

Figure 31b.

PR-548

Yag
YA;
1
YA
YAg
Yy
YAy
YAy
YA,
Yig 5
; Ag Ay Ay Az Ay As Ag A7 Ag Ag Ay Az Az Ag A5 Ag A7 Ag Ag Ay Az Az Ay Ag Ag £
cLock — cp cp cp
= ua1 3 ua2 g U4
i AM29775 5 Am29775 = Am297TS
E Ez =
Oy 0y Oy O3 Oy Og Og O Oy O Op O3 Oy O Op O Oy Oy O 03 O, Og
(=] = =] o - o [o™ - [@ k-
plomloal pliaglwls gl Sl]] S B S Rl B B I
o a E.' o i [N o o a o o o o a o a o a a Y o o a
N
Ap Ay Az Ay Ay Ag Ag A; Ag Ag Ay Az Az Ay Ag Ag A7 Ag Ag A1 Az Az Ag Ag Ag A7 Ag Ag Ay Ag Az Ay Ag Ag
& U4y s U4 Fir] u4g cs uso
Am27S13 Am27513 Am27513 Am27513
= Oy O st s Q07 0: 0 o (T e T e Qi 0y o0t o
4 &g E 5 & kA 2 B 3 2 3 2 £ 2 g &
ES 4 ES S = - § S ES ES ES ES a £ £ < ES
y MICROPROGRAM

Figure 31c

|

|

-

. -
Ag Ag Ay Az A3 Ag Ag Ag Ay Ag Ag Ag A Ay Aq Ag Ag A7 Ag Ag Ay Az Ay Ay Az Ag Ay Ag
g a4 = uds & uss
= Am29775 Am27S13 Am27513
2
, Oy 0p Oy 02 03 Oy O 0 O7rf = R R A G Op 210fhiE0s oy
- ol 2l o & ol ol =] e
5 JESL 3 1 S8 . S | el =ity
Y dla]lalala|l&]a] & £ 1 ES £ 1 £l 3 =
N MICROPROGRAM BITS
N
PIPELINE

|

|

Ag A1 Az Az Ag Ag Ag Ay Ag

Ag Ay Az Az Ag Ag Ag A; Ag

Ay Ag Ay Az Az Ay Ag Ag Ay Ag
cs Us1 s us2 forc] us3
AmM27513 Am27513 AM27813
Op O 0, O Op 04 o] Q3 Op. Op 0o 03
[~ = o o = w [
LY e Elrmhad] o T &| & §
s

MPR-548

ADVANCED

MICRO

DEVICES, INC.

901 Thompson Place
Sunnyvale

California 94086

(408) 732-2400,
TWX: 910—339—928‘
TELEX: 34-6301
B ESEREE

(800) 538-8450

8-78

