Build a Microcomputer

Chapter I
Microprogrammed Design

Advanced
Micro Devices

.\

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely
embodied in an Advanced Micro Devices’ product.

AM-PUBO073-2

|
|
Copyright © 1978 by Advanced Micro Devices, Inc. .

F

CHAPTER I
MICROPROGRAMMED DESIGN

INTRODUCTION

4 microprogrammed machine is one in which a coherent se-

uence of microinstructions is used to execute various com-
mands required by the machine. If the machine is a computer,
each sequence of microinstructions can be made to execute a
machine instruction. All of the little elemental tasks performed
by the machine in executing the machine instruction are called
microinstructions. The storage area for these microinstructions
is usually called the microprogram memory. This technique was
identified by Wilkes in the 1950's as a structured approach to
the random control logic in a computer.

A microinstruction usually has two primary parts. These
are: (1) the definition and control of all elemental micro-
operations to be carried out and (2) the definition and control of
the address of the next microinstruction to be executed.

The definition of the various micro-operations to be carried out
usually includes such things as ALU source operand selection,
ALU function, ALU destination, carry control, shift control, inter-
rupt control, data-in and data-out control and so forth. The def-
inition of the next microinstruction function usually includes
identifying the source selection of the next microinstruction ad-
dress, and in some cases, supplying the actual value of that
microinstruction address.

Microprogrammed machines are usually distinguished from
non-microprogrammed machines in the following manner. Old-
er, non-microprogrammed machines implemented the control
function by using combinations of gates and flip-flops con-
nected in a somewhat random fashion in order to generate the
required timing and control signals for the machine. Micropro-
grammed machines, on the other hand, are normally considered
highly ordered and more organized with regard to the control
function field. In its simplest definition, a microprogram control
unit consists of the microprogram memory and the structure
required to determine the address of the next microinstruction.

Microprogramming is normally selected by the design engineer
as a control technique for finite state machines because it im-
proves flexibility, performance, and LS| utilization. Several addi-
tional key features of microprogrammed designs are listed be-
low:

e More structured organization

Diagnostics can be implemented easily

Design changes are simple

Field updates are easy

Adaptations are straightforward

System definition can be expanded to include new features
Documentation and Service are easier

Design aids are available

® Cost and design time are reduced

THE MICROPROGRAM MEMORY

The microprogram memory is simply an N word by M bit mem-
ory used to hold the various microinstructions. For an N word
memory, the address locations are usually defined as location
0 through N—1. For example, a 256-word microprogram mem-
ry will have address locations 0 through 255. Each word of

brs microprogram memory consists of M bits. These M bits are

usually broken into various field definitions and the fields can
consist of various numbers of bits. It is the definition of the var-
ious fields of a microprogram word that is usually referred to as
FORMATTING.

An example of how microinstruction fields are defined in a typ-
ical machine microprogram memory word is as follows:

Field 1 — General purpose

Field 2 — Branch address

Field 3 — Next microinstruction address control
Field 4 — Condition code multiplexer control
Field 5 — Interrupt control

Field 6 — Fast clock/slow clock select

Field 7 — Carry control

Field 8 — ALU source operand control

Field 9 — ALU function control

Field 10 — ALU destination control
Field 11 — Shift multiplexer control
Field 12 — etc.

EXECUTING MICROINSTRUCTONS

Once the microprogram format has been defined, it is neces-
sary to execute sequences of these microinstructions if the
machine is to perform any real function. In its simplest form, all
that is required to sequence through a series of microinstruc-
tions is a microprogram address counter. The microprogram
address counter simply increments by one on each clock cycle
to select the address of the next microinstruction. For example,
if the microprogram address counter contains address 23, the
next clock cycle will increment the counter and it will select ad-
dress 24. The counter will continue to increment on each clock
cycle thereby selecting address 25, address 26, address 27,
and so forth. If this were the only control available, the machine
would not be very flexible and it would be able to execute only
a fixed pattern of microinstructions.

The technique of continuing from one microinstruction to the
next sequential microinstruction is usually referred to as CON-
TINUE. Thus, in microprogram control definition, we will use the
CONTINUE (CONT) statement to mean simply incrementing to
the next microinstruction.

MICROPROGRAM JUMPING

If the microprogram control unit is to have the ability to select
other than the next microinstruction, the control unit must be
able to load a JUMP address. The load control of a counter
can be a single bit field within the microprogram word format.
Let us call this one-bit field the microprogram address counter
load enable bit. When this bit is at logic 0, a load will be inhib-
ited and when this bit is a logic 1, a load will be enabled. If the
load is enabled, the JUMP address contained within the micro-
program memory will be parallel loaded into the microprogram
address counter. This results in the ability to perform an N-way
branch. For example, if the branch address field is eight bits wide,
aJUMP to any address in the memory space from word 0 through
word 255 can be performed.

This simple branching control feature allows a microprogram
memory controller to execute sequential microinstructions or
perform a JUMP (JMP) to any address either before or after
the address currently contained in the microprogram address
counter.

CONDITIONAL JUMPING

While the JUMP instruction has added some flexibility to the
sequencing of microprogram instructions, the controller still
lacks any decision-making capability. This decision-making
capability is provided by the CONDITIONAL JUMP (COND
JMP) instruction. Figure 1 shows a functional block diagram of
a microprogram memory/address controller providing the capa-
bility to jump on either of two different conditions. In this exam-
ple, the load select control is a two-bit field used to control a

CONDITION 2
%
CONDITION 1 L2
GND —I
Do Dy D2 By

5
MULTIPLEXER
=} Sﬁ
OUTPUT

— ‘

DATA LOAD

MICROPROGRAM
ADDRESS COUNTER

: T

ADDRESS

MICROPROGRAM MEMORY

BRANCH
ADDRESS

LOAD

SELECT CTHER

OTHER

MPR-455

O

OVERLAPPING THE MICROPROGRAM
INSTRUCTION FETCH

Now that a few basic microprogram address control instructions
have been defined, let us examine the control instructions used

in a microprogram control unit featuring the overlap fetching of 1

the next microinstruction. This technique is also known a

“pipelining”. The block diagram for such a microprogram con-
trol unit is shown in Figure 2. The key difference when com-
pared with previous microprogrammed architectures is the exis-
tence of the "pipeline register” at the output of the microprogram
memory. By definition, the pipeline register (or microword
register) contains the microinstruction currently being executed
by the machine. Simultaneously, while this microinstruction is
being executed, the address of the next microinstruction is
applied to the microprogram memory and the contents of that
memory word are being fetched and set-up at the inputs to the
pipeline register. This technique of pipelining can be used to
improve the performance of the microprogram control unit. This
results because the contents of the microprogram memory
word required for the next cycle are being fetched on an over-
lapping basis with the actual execution of the current micro-
program word. It should be realized that when the pipeline ap-
proach is used, the design engineer must be aware of the fact
that some registers contain the results of the previous mi-
croinstruction executed, some registers contain the current mi-
croinstruction being executed, and some registers contain data
for the next microinstruction to be executed.

Figure 1. A Two-Bit Control Field Can be Used
to Select CONTINUE, BRANCH, or
CONDITIONAL BRANCH.

four-input multiplexer. When the two-bit field is equivalent to bi-
nary zero, the multiplexer selects the zero input which forces
the load control inactive. Thus, the CONTINUE microprogram
control instruction is executed. When the two-bit load select
field contains binary one, the Dy input of the multiplexer is
selected. Now, the load control is a function of the Condition 1
input. If Condition 1 is logic 0, the microprogram address
counter increments and if Condition 1 is logic 1, the jump ad-
dress will be parallel loaded in the next clock cycle. This opera-
tion is defined as a CONDITIONAL JUMP. If the load select
input contains binary 2, the D, input is selected and the same
conditional function is performed with respect to the Condition 2
input. If the load select field contains binary 3, the Dj input of
the multiplexer is selected. Since the D, input is tied to logic
HIGH, this forces the microprogram address counter to the load
mode independent of anything else. Thus, the jump address is
loaded into the microprogram address counter on the next
clock cycle and an UNCONDITIONAL JUMP is executed. This
load select control function definition is shown in Table 1.

TABLE 1.
LOAD SELECT CONTROL FUNCTION.

S$15p Function

0 0 | Continue

0 1 | Jump Condition 1 True
1 0 | Jump Condition 2 True
11 Jump Unconditional

CONDITION 2 —————— Ve
CONDITION 1
GND —l
Dg Dy D, Dy

L]
CONDITION CODE
MULTIPLEXER

Sg
ouTPUT

|
e |

L] MICROPROGRAM
s COUNTER =—
=2 MU REGISTER
QUTPUT
‘L INCREMENTER
N N
ADDRESS

MICROPROGRAM MEMORY

NEXT
BRANCH
ADDRESS e OTHER
I PIPELINE REGISTER }—o

CLOCK

Figure 2. Overlapping (or Pipelining) the Fetch of the
Next Microinstruction.

MPR-456]

4

4

’

b.

F

Let us now compare the block diagram of Figure 2 with that
shown in Figure 1. The major difference, of course, is the addi-
tion of the pipeline register at the output of the microprogram
control memory. Also, notice the addition of the address multi-
plexer at the source of the microprogram memory address.
This address multiplexer is used to select the microprogram
counter register or the pipeline register as the source of the
next address for the microprogram memory. The condition code
multiplexer is used to control the address multiplexer in this ad-
dress selection. By placing an incrementer at the output of the
address multiplexer, is is possible to always generate the cur-
rent microprogram address “plus one” at the input of the micro-
program counter register.

In Figure 1, the microprogram address counter was described
as a counter and could be a device such as the Am25LS161
counter. In the implementation as shown in Figure 2, the
Am25LS161 counter is not appropriate. Instead, an incrementer
and register are used to give the equivalent effect of a counter.

The key difference between using a true binary counter and the
incrementer register described here is as follows. When the
jump address from the pipeline register is selected by the mul-
tiplexer, the incrementer will combinatorially prepare that ad-
dress plus one for entry into the microprogram counter register.
This entry will occur on the LOW-to-HIGH transition of the
clock. Thus, the microprogram counter register can always be
made to contain address plus one, independent of the selection
of the next microinstruction address. When the address multi-
plexer is switched so that the microprogram counter register is
selected as the source of the microprogram memory address,
the incrementer will again set-up address plus one for entry into
the microprogram counter register. Thus, when the address
multiplexer selects the microprogram counter register, the ad-
dress multiplexer, incrementer and microprogram counter regis-
ter appear to operate as a normal binary counter.

The condition code multiplexer S;S; operates in exactly the
same fashion as described for the condition code multiplexer of
Figure 1. That is, binary zero in the pipeline register (the cur-
rent microinstruction being executed) forces an unconditional
selection of the microprogram register via Dg. Binary one or bi-
nary two in the next address select control bits of the pipeline
register cause a conditional selection at the address multiplexer
via Dy or D;. Thus, a CONDITIONAL JUMP can be executed.
Binary three in the next address select portion of the pipeline
register causes an UNCONDITIONAL JUMP instruction to be
executed via Ds.

When the overall machine timing is studied, it will be observed
that the key difference between overlap fetching and non-
overlap fetching involves the propagation delay of the micro-
program memory. In the non-pipelined architecture, the micro-
program memory propagation delay must be added to the
propagation delay of all the other elements of the machine. In
the overlap fetch architecture, the propagation delay associated
with the next microprogram memory address fetch is a sepa-
rate loop independent of the other portion of the machine.

SUBROUTINING IN MICROPROGRAMMING CONTROL

Thus far, we have examined the CONTINUE instruction as well
as the CONDITIONAL and UNCONDITIONAL JUMP instruc-
tions for overlap fetch. Just as in the programming of minicom-

Uuters and microcomputers, the advantages of SUBROUTIN-

9

ING can be realized in microprogramming. The idea here, of
course, is that the same block of microcode (or even a single
microinstruction) can be shared by several microinstruction
sequences. This results in an overall reduction in the total

number of microprogram memory words required by the de-
sign. If we are to jump to a subroutine, what is required is the
ability to store an address to which the subroutine should return
when it has completed its execution. Examining the block dia-
gram of Figure 3, we see the addition of a subroutine and loop
(push/pop) stack (also called the file) and its associated stack
pointer. The control signals required by the stack are an enable
stack signal (FILE ENABLE = FE) which will be used to tell the
file whenever we wish to perform a push or a pop, and a
push/pop control (PUP) used to control the direction of the
stack pointer (push or pop).

In this architecture, the stack pointer always points to the address
of the last microinstruction written on the stack. This al-
lows the “next address multiplexer” to read the stack at any
time via port F. When this selection is performed, the last word
written on the stack will be the word applied to the micropro-
gram memory. The condition code multiplexer of the previous
example has also been replaced by a next address control unit.
This next address control unit (Am29811A) can execute 16 dif-
ferent next address control functions where most of these func-
tions are conditional. Thus, the device has four instruction in-
puts as well as one condition code test input which is con-
nected to the condition code multiplexer. Note also that the
next address control field of the microprogram word has been
expanded to a four-bit field. Outputs from the Am29811A next
address control block are used to control the stack pointer and
the next address multiplexer of the Am2911. In addition, the
device has outputs to control the three-state enable of the
pipeline register and the three-state enable of the starting ad-
dress decode PROM. Also, the architecture has a counter that
can be used as a loop-counter or event counter.

The 16 instructions associated with the Am29811A are listed in
Table 2. As is easily seen by referring to Table 2, three of the
instructions in this set are associated with subroutining in mi-
croprogram memory. The first instruction of this set, is a simple
conditional JUMP-TO-SUBROUTINE where the source of the
subroutine address is in the pipeline register. The RETURN-
FROM-SUBROUTINE instruction is also conditional and is used
to return to the next microinstruction following the JUMP-TO-
SUBROUTINE instruction. There is also a conditional JUMP-
TO-ONE-OF-TWO-SUBROUTINES, where the subroutine ad-
dress is either in the PIPELINE register or in the internal REG-
ISTER in the Am2911. This instruction will be explained in
more detail later.

TYPICAL COMPUTER CONTROL UNIT
ARCHITECTURE USING THE
Am2911 AND Am29811A

The microprogram memory control unit block diagram of Figure
3 is easily implemented using the Am2911 and Am29811A.
This architecture provides a structured state machine design
capable of executing many highly sophisticated next address
control instructions. The Am2911 contains a next address mul-
tiplexer that provides four different inputs from which the ad-
dress of the next microinstruction can be selected. These are
the direct input (D), the register input (R), the program counter
(PC), and the file (F). The starting address decoder (mapping
PROM) output and the pipeline register output are connected
together at the D input to the Am2911 and are operated in the
three-state mode.

The architecture of Figure 3 shows an instruction register ca-
pable of being loaded with a machine instruction word from the
data bus. The op code portion of the instruction is decoded
using a mapping PROM to arrive at a starting address for the

TABLE 2. FUNCTIONAL DESCRIPTION OF Am29811A INSTRUCTION SET.

INPUTS OUTPUTS
INSTRUCTION TEST | NEXT ADDR
MNEMONIC 12:02.110 FUNCTION INPUT SOURCE FILE | COUNTER | MAP-E | PL-E
Jz L L L L | JumpPzERo 3 o ‘[HoLo LL H L [
3 L L LH | coNDisePL L PC HOLD HOLD H i L)
H o PUSH HOLD H L
IMAP L LHL | JumPmar X) HOLD HOLD L H
cup L L HH | CONDJUMPPL L PC HOLD HOLD H L
H [+] HOLD HOLD H L
PUSH L H L L | PUSH/COND LD CNTR L PC PUSH HOLD H L
H PC PUSH LOAD H L
ISRP L H L H | CONDJSBRPL L R PUSH HOLD H L 4
H [*] PUSH HOLD H L
v L H H L | CONDJUMPVECTOR L PC HOLD HOLD H H
H o HOLD HOLD H H
JRP L H H H | CONDJUMPR/PL L R HOLD HOLD H L
H 3} HOLD HOLD H L “
RFCT HLLL REPEAT LOOF, CNTR # 0 L F HOLD DEC H L |
H PC POP HOLD H L
RPCT ALLUH REPEAT PL,CNTR # 0 L D HOLD DEC H L |
H PC HOLD HOLD H L |
CRTN HLHL COND RTN L [HOLD HOLD H L |
H F POP HORD H L
CJPP H L HH | CONDJUMPPL &POP L PC HOLD HOLD H L
H] POP HOLD H £
LocT HHLL LOAD CNTR & CONTINUE | X PC HOLD LOAD H L
LooP H H L H | TEST END LOOP L F HOLD HOLD H [k
H PC POP HOLD H L
CONT H H H L | CONTINUE X PC HOLD HOLD H L
3P H H HH | JUMPPL X o HOLD HOLD H L

DATA BUS

I |
INSTRUCTION REGISTER | |
0P CODE | OTHER u

o, ADDRESS Am2811 MICROPROGRAM SEQUENCERS
STARTING __ FE. pup
— TC. COUNTER ADDRESS OE [=— STACK POINTER
DECODER |
LOABICOUNT ouTPUT
REGISTER
SUBROUTINE
AND LOOP STACK
MICROPROGRAM
COUNTER REGISTER
© R F PC
5o NEXT ADDRESS
S, MULTIPLEXER e
QUTPUT
z 2z l i b
—| -
CARRY —={ 7 Am238114
o NEXT
OVR—=16 gk ADDRESS ADDRESS
zZro—]s z4 5 e TRk MICROPROGRAM MEMORY
sch——4 EE 5 CONTROL 2T,
a2 o BRANCH NEXT ADDRESS
INRPT —emf 3 §§ ADDRESS SELECT I L]
o - i i i
1 1 l
1 14 PIPELINE REGISTER ’
: ‘ | et 5

Am9014
3 OR Am2803

OTHER

MPR-457

Figure 3. A Typical Computer Control Unit Using the Am2911 and Am29811A.

4 _)

TABLE 3. PIN FUNCTIONS.

Function

Abbreviation Name
D Direct Input Bit i
I Instruction Bit i
[+ Condition Code
CCEN Condition Code Enable
Cl Carry-In
RLD Register Load
OE Output Enable
CP Clock Pulse
Vee +5 Volts
GND Ground
¥ Microprogram Address Bit i
FULL Full
P Pipeline Address Enable
MAP Map Address Enable
VECT Vector Address Enable

Direct input to register/counter and multiplexer. Dg is LSB
Selects one-of-sixteen instructions for the Am2910
Used as test criterion, Pass test is 3 LOW on CC,

Whenever the signal is HIGH, CC is ignored and the part operates
as though CC were true (LOW).

Low order carry input to incrementer for microprogram counter
When LOW forces loading of register/counter regardless of
instruction or condition

Three-state control of Y cutputs

Triggers all internal state changes at LOW-to-HIGH edge

Address to microprogram memory. Y is LSB, Y11 is MSB
Indicates that five items are on the stack

Can select #1 source (usually Pipeline Register) as direct
input source

Can select #2 source (usually Mapping PROM or PLA) as
direct input source

Can select #3 source (for example, Interrupt Starting Address)
as direct input source

microinstruction sequence required to execute the machine in-
struction. When the microprogram memory address is to be the
first microinstruction of the machine instruction sequence, the
Am29811A next address control unit selects the multiplexer D
input and enables the three-state output from the mapping
PROM. When the current microinstruction being executed is
selecting the next microinstruction address as a JUMP function,
the JUMP address will be available at the multiplexer D input.
This is accomplished by having the Am29811A select the next
address multiplexer D input and also enabling the three-state
output of the pipeline register branch address field. The register
enable input to the Am2911 is connected to ground so that this
register will always load the value at the Am2911 D input. The
value at D is clocked into the Am2911’s register (R) at the end
of the current microcycle, which makes the D value of this mi-
crocycle available as the R value of the next microcycle. Thus,
by using the branch address field of two sequential micro-
instructions, a conditional JUMP-TO-ONE-OF-TWO-
SUBROUTINES or a conditional JUMP-TO-ONE-OF-TWO-
BRANCH-ADDRESSES can be executed by either selecting
the D input or the R input of the next address multiplexer.

When sequencing through continuous microinstructions in mi-
croprogram memory, the program counter in the Am2911 is
used. Here, the Am29811A simply selects the PC input of the
next address multiplexer. In addition, most of these instructions
enable the three-state outputs of the pipeline register as-
sociated with the branch address field, which allows the register
within the Am2911 to be loaded.

The 4 x 4 stack in the Am2911 is used for looping and sub-
routining in microprogram operations. Up to four levels of sub-
routines or loops can be nested. Also, loops and subroutines
can be intermixed as long as the four-word depth of the stack
is not exceeded.

ARCHITECTURE OF THE Am2910

The Am2910 is a bipolar microprogram controller intended for
use in high-speed microprocessor applications. It allows ad-
dressing of up to 4K words of microprogram. A block diagram
is shown in Figure 4.

The controller contains a four-input multiplexer that is used to
select either the register/counter, direct input, microprogram
counter, or stack as the source of the next microinstruction ad-
dress.

The register/counter consists of 12 D-type, edge-triggered flip-
flops, with a common clock enable. When its load control, RLD,
is LOW, new data is loaded on a positive clock transition. A
few instructions include load; in most systems, these instruc-
tions will be sufficient, simplifying the microcode. The output of
the register/counter is available to the multiplexer as a source
for the next microinstruction address. The direct input furnishes
a source of data for loading the register/counter.

Cdy)
12
ALD
= REGISTER/ B STACK Bl
COUNTER POINTER
]
5WOAD X 128IT
- STACK
our
N £
=0
2 I
.] iy MICROPROGRAM
- = MULTIFLEXER UNTER
b
s REGI &TEH;(
T
0 =
s 5
T E
b
&
ED : || INCREMENTER
g
CCEN S PUSH/
FE POP/HOLD/ELEAR
I &
i a E CLEAR/COUNT
=
OF
= A
VU JJ N :
4 i% |5 Y —
o
= >
MPH-458

Figure 4. Am2910 Block Diagram.

The Am2910 contains a microprogram counter (wPC) that is
composed of a 12-bit incrementer followed by a 12-bit register.
The wPC can be used in either of two ways. When the carry-in
to the incrementer is HIGH, the microprogram register is loaded
on the next clock cycle with the current Y output word plus one
(Y+1=upPC). Sequential microinstructions are thus executed.
When the carry-in is LOW, the incrementer passes the Y output
word unmodified so that uPC is reloaded with the same Y word
on the next clock cycle (Y = pPC). The same microinstruction
is thus executed any number of times.

The third source for the multiplexer is the direct (D) inputs. This
source is used for branching.

The fourth source available at the multiplexer input is a 5-word
by 12-bit stack (file). The stack is used to provide return ad-
dress linkage when executing microsubroutines or loops. The
stack contains a build-in stack pointer (SP) which always points
to the last file word written. This allows stack reference opera-
tions (looping) to be performed without a pop. The stack pointer
operates as an up/down counter. During microinstructions 2, 4
and 5, the PUSH operation is performed. This causes the stack
pointer to increment and the file to be written with the required
return linkage. On the cycle following the PUSH, the return
data is at the new location pointed to by the stack pointer.

During six other microinstructions, a POP operation occurs.
This places the information at the top of the stack onto the Y
outputs. The stack pointer decrements at the next rising clock
edge following a POP, effectively removing old information from
the top of the stack.

The stack pointer linkage is such that any sequence of pushes,
pops or stack references can be achieved. At RESET (Instruc-
tion 0), the depth of nesting becomes zero. For each PUSH,
the nesting depth increases by one; for each POP, the depth
decreases by one. The depth can grow to five. After a depth of
five is reached, FULL goes LOW. Any further PUSHes onto a
full stack overwrites information at the top of the stack, but
leaves the stack pointer unchanged. This operation will usually
destroy useful information and is normally avoided. A POP from
an empty stack places non-meaningful data on the Y outputs,
but is otherwise safe. The stack pointer remains at zero
whenever a POP is attempted from a stack already empty.

The register/counter is operated during three microinstructions
(8, 9, 15) as a 12-bit down counter, with result = zero available
as a microinstruction branch test criterion. This provides effi-
cient iteration of microinstructions. The register/counter is ar-
ranged such that if it is preloaded with a number N and then
used as a loop termination counter, the sequence will be exe-
cuted exactly N+1 times. During instruction 15, a three-way
branch under combined control of the loop counter and the
condition code is available.

The device provides three-state Y outputs. These can be par-
ticularly useful in designs requiring automatic checkout of the
processor. The microprogram controller outputs can be forced
into the high-impedance state, and pre-programmed sequences
of microinstructions can be executed via external access to the
address lines.

OPERATION

Table 4 shows the result of each instruction in controlling the
multiplexer which determines the Y outputs, and in controlling the
three enable signals PL, MAP and VECT. The effect on the uPC,
the register/counter, and the stack after the next positive-going
clock edge is also shown. The multiplexer determines which
internal source drives the Y outputs. The value loaded into uPC is
either identical to the Y output, or else one greater, as determined
by Cl. For each instruction, one and only one of the three outputs
PL, MAP and VECT is LOW. If these outputs control three-state
enables for the primary source of microprogram jumps (usually
part of a pipeline register), a PROM which maps the instruction to
a microinstruction starting location, and an optional third source
(often a vector from a DMA or interrupt source), respectively, the
three-state sources can drive the D inputs without further logic.

Several inputs, as shown in Table 4 can modify instruction execu-
tion. The combination CC HIGH and CCEN LOW is used as a test
in 10 of the 16 instructions. RLD, when LOW, causes the D input
to be loaded into the register/counter, overriding any HOLD or
DEC operation specified in the instruction. OE, normally LOW,
may be forced HIGH to remove the Am2910 Y outputs from a
three-state bus.

TABLE 4. Am2910 MICROINSTRUCTION SET.

REG/ | FAIL — Pass__
HEX CNTR | CCEN = LOW and CC = HIGH | TCEN = HIGH or CC = LOW | occ
I31p | MNEMONIC NAME TENTs ¥ STACK ¥ STACK CNTR | ENABLE

1] JZ JUMP ZERO X 0 CLEAR 1] CLEAR HOLD PL
1 cls | CONDJSBPL X pC HOLD D PUSH HOLD FL
2 JMAP | JUMP MAP X D HOLD D HOLD HOLD MAP
3 CF | CONDJUMPPL X eC ~ HOLD B, HOLD "HOLD L |
4 PUSH PUSH/COND LD CNTR X [PusH | rcC PUSH | Nowe1 | PL |
5 JSRP COND JSB R/PL x R PUSH D PUSH HOLD Pl
6 cav COND JUMP VECTOR X eC HOLD D | HOLD HOLD | WVECT
7 IRP COND JUMP R/PL X R HOLD) HOLD HOLD | PL_ |
. arer R TRy R A (B F HOLD £ HOLD DEC PL

-0 BC POP PC POP HOLD | PL

40 D HOLD D ~ HOLD DEC TRl |
9 RPCT REPEAT PL,CNTR =0 b

<0 [HOLD PC HOLD HOLD | PL
ry CATN COND RTN e [HOLD F POP | HOLD | °L
B CJPP COND JUMP PL & POP I HOLD) D POP HOLD BL
c LDCT | LDCNTR & CONTINUE X [HOLD PC HOLD LOAD BL
B LOOP TEST END LOOP x | F HOLD PC POP HOLD P
€ CONT CONTINUE X PC HOLD [HOLD | HOLD | PL
F TWB THREE.WAY BRANCH #0 F HOLD PC POP DEC PL

<0 D POP [POP HOLD | PL

Mote: 1f CCEN = LOW and CC = HIGH, hold; else load. ¥ = Don’t Care.

6

\

"

The stack, a five-word last-in, first-out 12-bit memory, has a
pointer which addresses the value presently on the top of the
stack. Explicit control of the stack pointer occurs during instruc-
tion 0 (RESET), which makes the stack empty by resetting the SP
to zero. Aftera RESET, and whenever else the stack is empty, the
' content of the top of stack is undefined until a PUSH occurs. Any
POPs performed while the stack is empty put undefined data on
the F outputs and leave the stack pointer at zero. Any time the
stack is full (five more PUSHes than POPs have occurred since
the stack was last empty), the F_Lﬁwaming output occurs. No
additional PUSH should be attempted onto a full stack; if tried,
information at the top of the stack will be overwritten and lost.

THE Am2910 INSTRUCTION SET

The Am2910 provides 16 instructions which select the address of
the next microinstruction to be executed. Four of the instructions
are unconditional — their effect depends only on the instruction.
Ten of the instructions have an effect which is partially controlled
by an external, data-dependent condition. Three of the instruc-
tions have an effect which is partially controlled by the contents of
the internal register/counter. The instruction set is shown in Table
4. In this discussion it is assumed that Cl is tied HIGH.

In the ten conditional instructions, the result of the data-
dependent test is applied to CC. Ifthe CC inputis LOW, the test is
considered to have been passed, and the action specified in the
name occurs; otherwise, the test has failed and an alternate
(often simply the execution of the next sequential microinstruc-
tion) occurs. Testing of CC may be disabled for a specific micro-
instruction by setting CCEN HIGH, which unconditionally forces
the action specified in the name; that is, it forces a pass. Other
ways of using CCEN include (1) tying it HIGH, which is useful if no
microinstruction is data-dependent; (2) tying it LOW if data-
* dependent instructions are never forced unconditionally; or (3)
tying it to the source of Am2910 instruction bit ly, which leaves
instructions 4, 6 and 10 as data-dependent but makes others
unconditional. All of these tricks save one bit of microcode width.

The effect of three instructions depends on the contents of the
register/counter. Unless the counter holds a value of zero, it is
decremented; if it does hold zero, it is held and a different micro-
program next address is selected. These instructions are useful
for executing a microinstruction loop a known number of times.
Instruction 15 is affected both by the external condition code and
the internal register/counter.

Perhaps the best technique for understanding the Am2910 is to
simply take each instruction and review its operation. In order to
provide some feel for the actual execution of these instructions,
Figure 5 is included and depicts examples of all 16 instructions.

The examples given in Figure 5 should be interpreted in the
following manner: The intent is to show microprogram flow as
various microprogram memory words are executed. For exam-
ple, the CONTINUE instruction, instruction number 14, as shown
in Figure 5, simply means that the contents of microprogram
memory word 50 is executed, then the contents of word 51 is
executed. This is followed by the contents of microprogram
memory word 52 and the contents of microprogram memory word
53. The microprogram addresses used in the examples were
arbitrarily chosen and have no meaning other than to show in-
struction flow. The exception to this is the first example, JUMP

' ZERO, which forces the microprogram location counter to ad-

'dress ZERO. Each dot refers to the time that the contents of the
microprogram memory word is in the pipeline register. While no
special symbology is used for the conditional instructions, the text
to follow will explain what the conditional choices are in each
example.

It might be appropriate at this time to mention that AMD has a
microprogram assembler called AMDASM, which has the capa-
bility of using the Am2910 instructions in symbolic representa-
tion. AMDASM's Am2910 instruction symbolics (or mnemonics)
are given in Figure 5 for each instruction and are also shown in
Table 4.

Instruction 0, JZ (JUMP and ZERO, or RESET) unconditionally
specifies that the address of the next microinstruction is zero.
Many designs use this feature for power-up sequences and pro-
vide the power-up firmware beginning at microprogram memory
word location 0.

Instruction 1 is a CONDITIONAL JUMP-TO-SUBROUTINE via
the address provided in the pipeline register. As shown in Figure
5, the machine might have executed words at address 50, 51 and
52. When the contents of address 52 is in the pipeline register, the
next address control function is the CONDITIONAL JUMP-TO-
SUBROUTINE. Here, if the test is passed, the next instruction
executed will be the contents of microprogram memory location
90. If the test failed, the JUMP-TO-SUBROUTINE will not be
executed; the contents of microprogram memory location 53 will
be executed instead. Thus, the CONDITIONAL JUMP-TO-
SUBROUTINE instruction at location 52 will cause the instruction
either in location 90 or in location 53 to be executed next. If the
TEST input is such that location 90 is selected, value 53 will be
pushed onto the internal stack. This provides the return linkage
for the machine when the subroutine beginning at location 90 is
completed. In this example, the subroutine was completed at
location 93 and a RETURN-FROM-SUBROUTINE would be
found at location 93.

Instruction 2 is the JUMP MAP instruction. This is an uncondi-
tional instruction which causes the MAP output to be enabled so
that the next microinstruction location is determined by the ad-
dress supplied via the mapping PROMs. Normally the JUMP
MAP instruction is used at the end of the instruction fetch se-
quence for the machine. In the example of Figure 5, microinstruc-
tions at locations 50, 51, 52 and 53 might have been the fetch
sequence and at its completion at location 53, the jump map
function would be contained in the pipeline register. This example
shows the mapping PROM outputs to be 90; therefore, an uncon-
ditional jump to microprogram memory address 90 is performed.

Instruction 3, CONDITIONAL JUMP PIPELINE, derives its
branch address from the pipeline register branch address value
(BRg-BRy; in Figure 6). This instruction provides a technique for
branching to various microprogram sequences depending upon
the test condition inputs. Quite often, state machines are de-
signed which simply execute tests on various inputs waiting for
the condition to come true. When the true condition is reached,
the machine then branches and executes a set of microinstruc-
tions to perform some function. This usually has the effect of
resetting the input being tested until some point in the future.
Figure 5 shows the conditional jump via the pipeline register
address at location 52. When the contents of microprogram
memory word 52 are in the pipeline register, the next address will
be either location 53 or location 30 in this example. If the test is
passed, the value currently in the pipeline register (3) will be
selected. If the test fails, the next address selected will be con-
tained in the microprogram counter which, in this example, is 53.

Instruction 4 is the PUSH/CONDITIONAL LOAD COUNTER in-
struction and is used primarily for setting up loops in micropro-
gram firmware. In Figure 5, when instruction 52 is in the pipeline
register, a PUSH will be made onto the stack and the counter will
be loaded based on the condition. When a PUSH occurs, the
value pushed is always the next sequential instruction address. In
this case, the address is 53. If the test fails, the counter is not

0 JUMP ZERO (J2)

(SR =]
Z

1 COND JSB PL (CJS)

STACK

aELEIRe 8
[= =1

2 JUMP MAP (JMAP)

51
52
53

a1

3 COND JUMP PL (CJP)

4 PUSH/COND LD CNTR (PUSH)

STACK
50
51
52 REGISTER/
53 COUNTER

6 COND JUMP VECTOR (CJV)

7 COND JUMP R/PL (JRP)

71 a

5 COND JSB R/PL (JSRP)

8 REPEAT LOOP, CNTR # 0 (RFCT)
@ STACK
(PUSH]

REGISTER/
51 COUNTER
52

53

a % B

9 REPEATPL,CNTR # 0 (RPCT)

COUNTER
[LDCT)

51

52

53

!

11 COND JUMP PL & POP (CJPP)

STACK
50 (PUSH)
51
52 70
53 80 kil

54 —E 80 N 72
55 a1 92
56 82

12 LDCNTR & CONTINUE (LDCT)

COUNTER

51
52

%

10 COND RETURN (CRTN}

STACK
50
51
52
53
54
55

a0
a1
a2
93
94
95
96
97

14 CONTINUE (CONT)

51

15 THREE-WAY BRANCH (TWB)

STACK
62 {PUSH)
63 REGISTER/
B4 COUNTER
65 ;. 72
&6 73

13 TEST END LOOP (LOOP)

50
5
52
53
54
55
56
57

STACK
(PUSH]

Figure 5. Am2910 Execution Examples.
8

MPR-111

o

loaded; if it is passed, the counter is loaded with the value con-
tained in the pipeline register branch address field. Thus, a single
microinstruction can be used to set up a loop to be executed a
specific number of times. Instruction 8 will describe how to use
the pushed value and the register/counter for looping.

" Instruction 5 is a CONDITIONAL JUMP-TO-SUBROUTINE via

the register/counter or the contents of the PIPELINE register. As
shown in Figure 5, a PUSH is always performed and one of two
subroutines executed. In this example, either the subroutine be-
ginning at address 80 or the subroutine beginning at address 90
will be performed. A return-from-subroutine (instruction number
10) returns the microprogram flow to address 55. In order for this
microinstruction control sequence to operate correctly, both the
next address fields of instruction 53 and the next address fields of
instruction 54 would have to contain the proper value. Let's
assume that the branch address fields of instruction 53 contain
the value 90 so that it will be in the Am2910 register/counter when
the contents of address 54 are in the pipeline register. This
requires that instruction at address 53 load the register/counter.
Now, during the execution of instruction 5 (at address 54), if the
test failed, the contents of the register (value = 90) will select the
address of the next microinstruction. If the test input passes, the
pipeline register contents (value = 80) will determine the address
of the next microinstruction. Therefore, this instruction provides
the ability to select one of two subroutines to be executed based
on a test condition.

Instruction 6 is a CONDITIONAL JUMP VECTOR instruction
which provides the capability to take the branch address from a
third source heretofore not discussed. In order for this instruction
to be useful, the Am2910 output, VECT, is used to control a
three-state control input of a register, buffer, or PROM containing
the next microprogram address. This instruction provides one
technique for performing interrupt type branching at the micro-
program level. Since this instruction is conditional, a pass causes
the next address to be taken from the vector source, while failure
causes the next address to be taken from the microprogram
counter. In the example of Figure 5, if the CONDITIONAL JUMP
VECTOR instruction is contained at location 52, execution will
continue at vector address 20 if the TEST input is HIGH and the
microinstruction at address 53 will be executed if the TEST input
is LOW.

Instruction 7 is a CONDITIONAL JUMP via the contents of the
Am2910 REGISTER/COUNTER or the contents of the PIPELINE
register. This instruction is very similar to instruction 5; the condi-
tional jump-to-subroutine via R or PL. The major difference be-
tween instruction 5 and instruction 7 is that no push onto the stack
is performed with 7. Figure 5 depicts this instruction as a branch
to one of two locations depending on the test condition. The
example assumes the pipeline register contains the value 70
when the contents of address 52 is being executed. As the
contents of address 53 is clocked into the pipeline register, the
value 70 is loaded into the register/counter in the Am2910. The
value 80 is available when the contents of address 53 is in the
pipeline register. Thus, control is transferred to either address 70
or address 80 depending on the test condition.

Instruction 8 is the REPEAT LOOP, COUNTER # ZERO instruc-
tion. This microinstruction makes use of the decrementing capa-
bility of the register/counter. To be useful, some previous instruc-
tion, such as 4, must have loaded a count value into the register/
counter. This instruction checks to see whether the register/
counter contains a non-zero value. If so, the register/counter is
decremented, and the address of the next microinstruction is
taken from the top of the stack. If the register counter contains
zero, the loop exit condition is occurring; control falls through to

the next sequential microinstruction by selecting uPC; the stack
is POP'd by decrementing the stack pointer, but the contents of
the top of the stack are thrown away.

An example of the REPEAT LOOP, COUNTER # ZERO instruc-
tion is shown in Figure 5. In this example, location 50 most likely
would contain -a PUSH/CONDITIONAL LOAD COUNTER in-
struction which would have caused address 51 to be PUSHed on
the stack and the counter to be loaded with the proper value for
looping the desired number of times.

In this example, since the loop test is made at the end of the
instructions to be repeated (microaddress 54), the proper value to
be loaded by the instruction at address 50 is one less than the
desired number of passes through the loop. This method allows a
loop to be executed from 0 to 4095 times.

Single-microinstruction loops provide a highly efficient capability
for executing a specific microinstruction a fixed number of times.
Examples include fixed rotates, byte swap, fixed point multiply,
and fixed point divide.

Instruction 9 is the REPEAT PIPELINE REGISTER, COUNTER
ZERO instruction. This instruction is similar to instruction 8
except that the branch address now comes from the pipeline
register rather than the file. In some cases, this instruction may be
thought of as a one-word file extension; that is, by using this
instruction, a loop with the counter can still be performed when
subroutines are nested five deep. This instruction's operation is
very similar to that of instruction 8. The differences are thaton this
instruction, a failed test condition causes the source of the next
microinstruction address to be the D inputs; and, when the test
condition is passed, this instruction does not perform a POP
because the stack is not being used.

In the example of Figure 5, the REPEAT PIPELINE, COUNTER
ZERO instruction is instruction 52 and is shown as a single
microinstruction loop. The address in the pipeline register would
be 52. Instruction 51 in this example could be the LOAD
COUNTER AND CONTINUE instruction (number 12). While the
example shows a single microinstruction loop, by simply chang-
ing the address in a pipeline register, multi-instruction loops can
be performed in this manner for a fixed number of times as
determined by the counter.

Instruction 10 is the conditional RETURN-FROM-SUBROUTINE
instruction. As the name implies, this instruction is used to branch
from the subroutine back to the next microinstruction address
following the subroutine call. Since this instruction is conditional,
the return is performed only if the test is passed. If the test is
failed, the next sequential microinstruction is performed. The
example in Figure 5 depicts the use of the conditional RETURN-
FROM-SUBROUTINE instruction in both the conditional and the
unconditional modes. This example first shows a jump-to-
subroutine at instruction location 52 where control is transferred
to location 90. At location 93, a conditional RETURN-FROM-
SUBROUTINE instruction is performed. If the test is passed, the
stack is accessed and the program will transfer to the next instruc-
tion at address 53. If the test is failed, the next microinstruction at
address 94 will be executed. The program will continue to ad-
dress 97 where the subroutine is complete. To perform an un-
conditional RETURN-FROM-SUBROUTINE, the conditional
RETURN-FROM-SUBROUTINE instruction is executed uncon-
ditionally; the microinstruction at address 97 is programmed to
force CCEN HIGH, disabling the test and the forced PASS
causes an unconditional return.

Instruction 11 is the CONDITIONAL JUMP PIPELINE register
address and POP stack instruction. This instruction provides
another technique for loop termination and stack maintenance.

The example in Figure 5 shows a loop being performed from
address 55 back to address 51. The instructions at locations 52,
53 and 54 are all conditional JUMP and POP instructions. At
address 52, if the TEST input is passed, a branch will be made to
address 70 and the stack will be properly maintained via a POP.
Shouldthe test fail, the instruction at location 53 (the next sequen-
tial instruction) will be executed. Likewise, at address 53, either
the instruction at 90 or 54 will be subsequently executed, respec-
tive to the test being passed or failed. The instruction at 54 follows
the same rules, going to either 80 or 55. An instruction sequence
as described here, using the CONDITIONAL JUMP PIPELINE
and POP instruction, is very useful when several inputs are being
tested and the microprogram is looping waiting for any of the
inputs being tested to occur before proceeding to another se-
quence of instructions. This provides the powerful jump-table
programming technique at the firmware level.

Instruction 12 is the LOAD COUNTER AND CONTINUE instruc-
tion, which simply enables the counter to be loaded with the value
atits parallel inputs. These inputs are normally connected to the
pipeline branch address field which (in the architecture being
described here) serves to supply either a branch address or a
counter value depending upon the microinstruction being exe-
cuted. There are altogether three ways of loading the counter —
the explicit load by this instruction 12; the conditional load in-
cluded as part of instruction 4; and the use of the RLD input along
with any instruction. The use of RLD with any instruction over-
rides any counting or decrementation specified in the instruction,
calling for a load instead. Its use provides additional microinstruc-
tion power, at the expense of one bit of microinstruction width.
This instruction 12 is exactly equivalent to the combination of
instruction 14 and RLD LOW. Its purpose is to provide a simple
capability to load the register/counter in those implementations
which do not provide microprogrammed control for RLD.

Instruction 13 is the TEST END-OF-LOOP instruction, which
provides the capability of conditionally exiting a loop at the bot-
tom; that is, this is a conditional instruction that will cause the
microprogram to loop, via the file, if the test is failed else to
continue to the next sequential instruction. The example in Figure
5 shows the TEST END-OF-LOOP microinstruction at address
56. If the test fails, the microprogram will branch to address 52.
Address 52 is on the stack because a PUSH instruction had been
executed at address 51. If the test is passed at instruction 56, the
loop is terminated and the next sequential microinstruction at
address 57 is being executed, which also causes the stack to be
POPd; thus, accomplishing the required stack maintenance.

Instruction 14 is the CONTINUE instruction, which simply causes
the microprogram counter to increment so that the next sequen-
tial microinstruction is executed. This is the simplest microinstruc-
tion of all and should be the default instruction which the firmware
requests whenever there is nothing better to do.

Instruction 15, THREE-WAY BRANCH, is the most complex. It
provides for testing of both a data-dependent condition and the
counter during one microinstruction and provides for selecting
among one of three microinstruction addresses as the next mi-
croinstruction to be performed. Like instruction 8, a previous
instruction will have loaded a count into the register/counter while
pushing a microbranch address onto the stack. Instruction 15
performs a decrement-and-branch-until-zero function similar to
instruction 8. The next address is taken from the top of the stack
until the count reaches zero; then the next address comes from
the pipeline register. The above action continues as long as the
test condition fails. If at any execution of instruction 15 the test
condition is passed, no branch is taken; the microprogram
counter register furnishes the next address. When the loop is

10

ended, either by the count becoming zero, or by passing the
conditional test, the stack is POP’'d by decrementing the stack
pointer, since interest in the value contained at the top of the stack
is then complete.

The application of instruction 15 can enhance performance of a
variety of machine-level instructions. For instance, (1) a memory
search instruction to be terminated either by finding a desired
memory content or by reaching the search limit; (2) variable-
field-length arithmetic terminated early upon finding that the con-
tent of the portion of the field still unprocessed is all zeroes; (3)
key search in a disc controller processing variable length records:
(4) normalization of a floating point number.

As one example, consider the case of a memory search instruc-
tion. As shown in Figure 5, the instruction at microprogram ad-
dress 63 can be Instruction 4 (PUSH), which will push the value
64 onto the microprogram stack and load the number N, which is
one less than the number of memory locations to be searched
before giving up. Location 64 contains a microinstruction which
fetches the next operand from the memory area to be searched
and compares it with the search key. Location 65 contains a
microinstruction which tests the result of the comparison and also
is a THREE-WAY BRANCH for microprogram control. If no match
is found, the test fails and the microprogram goes back to location
64 for the next operand address. When the count becomes zero,
the microprogram branches to location 72, which does whatever
is necessary if no match is found. If a match occurs on any
execution of the THREE-WAY BRANCH at location 65, control
falls through to location 66 which handles this case. Whether the
instruction ends by finding a match or not, the stack will have
been POP'd once, removing the value 64 from the top of the
stack.

Am29811A Instruction Set Difference

The Am29811A instruction set is identical to the Am2910 except
for instruction number 15. In the Am29811A, instruction number
15 is an unconditional JUMP PIPELINE REGISTER instruction.
This provides the ability to unconditionally branch to any address
contained in the branch address field of the microprogram. Thus,
an unconditional N-way branch can be performed. Use of this
instruction as opposed to a forced conditional jump pipeline in-
struction simply allows the condition code multiplexer select field
to be shared (formatted) with other functions.

TYPICAL COMPUTER CONTROL UNIT ARCHITECTURE
USING THE Am2910

The microprogram memory control unit block diagram of Figure 6
is easily implemented using the Am2910. This architecture pro-
vides a structured state machine design capable of executing
many highly sophisticated next address control instructions.

The architecture of Figure 6 shows an instruction register capable
of being loaded with a machine instruction word from the data
bus. The op code portion of the instruction is decoded using a
mapping PROM to arrive at a starting address for the mi-
croinstruction sequence required to execute the machine instruc-
tion. When the microprogram memory address is to be the first
microinstruction of the machine instruction sequence, the
Am2910 next address control selects the multiplexer D input and
enables the three-state output from the mapping PROM. When
the current microinstruction being executed is selecting the next
microinstruction address as a JUMP function, the JUMP address
will be available at the multiplexer D input. This is accomplished
by having the Am2910 select the next address multiplexer D input
and also enabling the three-state output of the pipeline register
branch address field. The register enable input to the Am2910
can be grounded so that this register will load the value at the

u

o

Am2910 D input. The value at D is clocked into the Am2910’s
register (R) at the end of the current microcycle, which makes the
D value of this microcycle available as the R value of the next
microcycle. Thus, by using the branch address field of two se-
quential microinstructions, a conditional JUMP-TO-ONE-OF-
TWO-SUBROUTINES or a conditional JUMP-TO-ONE-OF-
TWO-BRANCH-ADDRESSES can be. executed by either se-
lecting the D input or the R input of the next address multiplexer.

When sequencing through continuous microinstructions in mi-
croprogram memory, the program counter in the Am2910 is used.
Here, the control logic simply selects the PC input of the next
address multiplexer. In addition, most of these instructions ena-
ble the three-state outputs of the pipeline register associated with
the branch address field, which allows the register within the
Am2910 to be loaded. The 5 x 12 stack in the Am2910 is used for

looping and subroutining in microprogram operations. Up to five
levels of subroutines or loops can be nested. Also, loops and
subroutines can be intermixed as long as the five word depth of
the stack is not exceeded.

CCU TIMING

The minimum clock cycle that can be used in a CCU design is
usually determined by the component delays along the longest
“pipeline-register-clock to logic to pipeline-register-clock” path.
At the beginning of any given clock cycle, data available at the
output of the microprogram memory, counter status, and any
other data and/or status fields, are latched into their associated
pipeline registers. At this point, all delay paths begin. Visual
inspection will not always point out the longest signal delay path.

¢

DATA BUS >

INSTRUCTION REGISTER

OP CODE

OTHER

Am2an

ADDRESS.
MAPPING o STACK
PROM . ———| POINTER
OUTPUT
REGISTER/
COUNTER
SUBROUTINE
AND LOOP STACK
CARRY —{ 8 A 12
\
ovR —7 g s
zErRO —] & e .
SIGN s ofE 12 MICROPROGRAM
ZxE COUNTER REGISTER
INRPT —— 4 Eda
5
SFQ
erc — 3 Z3
2 °=F b R F PC
, NEXT ADDRESS
i e e INCREMENTER
— oUTPUT
s ' [
cc
TEST
. CONTROL
12
ADDRESS
MICROPROGRAM MEMORY
PIPELINE REGISTER
BRANCH
ADDRESS | ADDRESS SELECT OTHER
BRyBR |
o 11 *12
8 T0
Am2901A/AM2903

ETC

MPR-459

Figure 6. A Typical Computer Control Unit Using the Am2910.

11

The obviously long paths are a good place to start, but each
definable path should be calculated on a component by compo-
nent basis until the truly longest logic signal path is found.

Referring to Figure 6, a number of potentially long paths can be
identified. These include the instruction register to pipeline regis-
ter time, the pipeline register to pipeline register time via the
condition code multiplexer and the status to pipeline register time.
In order to demonstrate the technique for calculating the AC
performance of the Am2910 state machine design, the timing
diagrams of Figure 7 are presented. Here, a number of propaga-
tion delay paths are evaluated such that the reader can learn the
technique for performing these computations.

All of the propagation delays have been calculated using typical
propagation delays because at the time of this writing, the charac-
terization of the Am2910 has not been completed. When the final
data sheet s published, the user need only select the appropriate
worst case specifications and he can compute the desired
maximum propagation delays for his design. Also, by looking at
the typical propagation delay numbers, the designer will be able
to evaluate the design margin in the system after he has com-
pleted all of the worst case calculations. These typical prop-
agation delays represent the expected values if a system were
set up on the bench and actual measurements would be taken at
5V and 25°C operating temperature.

While Figure 6 and Figure 7 deal with the Am2910 microprogram
sequencer, itis also instructive to evaluate the AC performance of
a typical computer control unit using the Am2911 and
Am29811A. Figure 3 shows such a connection and will be used
as the basis for performing the propagation delay path calcula-
tions. The calculations for the various propagation delay paths
are demonstrated in Figure 8 and are intended to show the

technique for computing these delays. As before, the typical
propagation delays have been used in the computation for com-
parison purposes. The user can derive the maximum numbers at
25°C and 5V, commercial temperature range and power supply
variations or military temperature range and power supply varia-
tions as required for his design.

When Figure 7 and Figure 8 are reviewed in detail, the reader will
recognize that the longest propagation delay paths in the case of
the Am2910 as well as the Am2911 and Am29811A involve the
three-state enables on the map PROM or the pipeline register for
the branch address. If absolute maximum speed is desired, these
paths can be eliminated by using one of several techniques. One
technique is to simply allocate one or more bits in the pipeline
register to control the three-state enables of the various devices
connected to the D input of the Am2910. For the example of
Figure 6, one bit would be sufficient and the pipeline register
could be implemented using an Am74S175 register. This would
allow the true and complement outputs to be used to drive the
pipeline register branch address output enable and the mapping
PROM output enable. Thus, these longest paths would be elimi-
nated and an improvement of about 30ns would be achieved. A
second technique for eliminating these propagation delay paths
would be to use a four input NAND gate and a four input NOR gate
to encode the equivalent function of the MAP enable and the PL
enable. This technique is demonstrated in Figure 9. Again, an
Am748175 register would be used as the pipeline register to
provide the instruction inputs to the Am2910 sequencer. This
would allow instruction 2 to be decoded to provide the MAP
enable signal and “NOT INSTRUCTION 2" to be decoded as the
pipeline enable signal. This technique can be applied as well to
the computer control unit of Figure 3 to accomplish the same
longest path elimination.

a)
< DATA BUS >
Jo
Q ;—— —— — ——
INSTRUCTION Q MAP i (T L; 3 ; ' 1 ‘
REGISTER A PROM ! - 1
MaP
cLOCK CP_"_‘T_E:@W_“ '—‘*““"——'\] | ‘
=3)
L Al
cP cP v | ‘ ! ‘
o a D I I I A
Am2922 Sk] i I
— STATUS coNDITION J]]
REGISTER L CODE MICROPROGRAM
. - MUX TEST . | —J“Emﬁ? I ’ l I
0] f I 1|
CONDITIONAL JUMP t A ‘ | !
SPEED COMPUTATIONS [‘ ! l i
DEVICENO.| DEVICE PATH PATH 1 PATH 2 | PATH 3 I b b ‘ } . I
S - REG cPioY 9 s | 9 - | J ‘
2910 Ito BT 27 27 27 1 r‘m‘“"s_” > rfﬁ‘ e T #— . ‘
S - REG OEfo Y 13 13 13 i { (‘_'_"' ?Is I
2910 Do Y 14 - - L.....‘ ¥ E " [
PRCOM ADDR to OUT a0 = L\.__..J Y | kL._J
2922 SET-UP R 5 - : S e
2910 SET-UP PC = 3 =
2910 SET-UP R 2 = | g P:TH 1 —
TOTAL-ns [%8 a3 | 58 PATH 2 '
| PATH3 —— ¢ e -

Figure 7. Propagation Delay Calculations on the Am2910 Microprogram Sequencer.

12

/

b)
DATA BUS >
fo
a
INSTRUCTION Q MAP I o
REGISTER A PROM s
WAP
3
cLOCK : i Am2910 PL
2 SEQUENCER
ERRER L oy R R
| F =
A
L |
1
cP P T
o a 5 1 A
Arh2922)
STATUS co 1oH— ¥-
. REGISTER . ODE —— 'ROGRAM
. . [3 TEST MEMORY
fiS /|
CONDITIONAL JUMP
SPEED COMPUTATIONS o D
DEVICE NO. DEVICE PATH PATH 1 PATH 2 i e s
—
2922 CPiIoY 21 21 FEGETEN cp REQISTER -~ [oe
2910 | CCwy 21 -
PROM | ADDR 10 OUT 30 ¥] ¥
2022 SET-UP R 5 -
2010 SET-UP PC - 46
TOTAL 77 &7 PATH 1 '
-N§ e it e
PATH 2 MPR-451
c)
DATA BUS >
fo
a
INSTRUCTION e MAP To
REGISTER 7T PROM i
WAP
GE
CLOCK 4 CF Am2910 PL
By SEQUENCER
i el R L
l = =
J)
| ;
ce cp | ¥
D] [-] -} A
[
k__.__,_.m_-_.am.mz__.,_)
—_ STATUS CONDITION
REGISTER v DDE MICROPROGRAM
. . MUX TEST MEMORY
—_—
L /]
CONDITIONAL JUMP
SPEED COMPUTATIONS
[D D
| DEVICE NO. DEVICE PATH PATH 1 PATH 2
| ok PIPELINE PIPELINE
5 - REG CPtoQ 9 9 -
i:1 —
sa s 9 o REGISTER o REGISTE 3
2010 CCwY 21 -
PROM ADDR TO QUT 30 ¥ | | ¥
2922 SET-UP R 5 <
2010 SET-UP PC - 46
TOTAL: o 8 68 PATH 1
OTALns PATH2 —— — — —

MPR-462

Figure 7. Propagation Delay Calculations on the Am2910 Microprogram Sequencer (Cont.).

13

d)

j
|
h
u
u
'I

e :
INSTRUCTION Q MaP o
REGISTER - PROM l I . |
. k_ MAPR. E ;
e P [}
cLocK i 1 | A 2910 PL .
. SEQUENCER
= J al ?c |
== I
(I
cp cp .
] a D | | l A |
—
Am2622 . |
—] STATUS CONDITION s | 1
REGISTER . CODE ! MICROPROGRAM !
- . Mux TEST i | MORY !
—_
JUMP MAP i ' | .
SPEED COMPUTATIONS I | |
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3 | D D |
|
S - REG CPtaQ] 9 9 Il e |
| 2910 Ito MAP 27 27 27 REQSTER I ;?.;'T'éi " j
| MaP-PROM BF o OUT 18 18 18 | T OF I
2910 Do Y 14 - - .
PROM ADDR to OUT 30 - - . Lﬁj | l"— i
2922 SET-UP R 5 - - f=— q
2910 SET-UP PC - 3 -
2910 SET-UP R . - 3 :"TH 1
TOTAL-ns 103 88 6 ALl2
PATHZ — = —— = — MPR-463

) W

T P ———
e ——
e |— = "":""‘..-’ 5\
i e y 1
REGISTER . PROM
= g
cLocK | £R Ah2910 PL
] SEQUENCER
ec .
PC
STACK
: ps
cp cp
] [D l A
—]
Am2g22
—_— STATUS CONDITION X |
REGISTER . CODE MICROPROGRAM |
. . MUX TEST (MEMORY “|
— |
|
i)] i
JUMP MAP]
SPEED COMPUTATIONS |
r
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3 [D
| 2 IR
S - REG CP1oQ 9 9)
PIPELINI |
MAP-PROM ADDR to OUT 25 25 25 ﬁmi :'E';‘;'Tﬁ =—v |
2910 Doy 14 z - cE % |
PROM ADDR to OUT 30 - - I
2022 SET-UP A 5 - - A X o |
2910 SET-UP PC - 34 -
2910 SET-UP R = - 9 PATH 1 u l
TOTAL-ns 83 88 43 RATH 2 |
PATH3 — - — - —- MPR-464

Figure 7. Propagation Delay Calculations on the Am2910 Microprogram Sequencer (Cont.).

14 \J :’

- DATA BUS >
W B
a
Q MAP ﬁ,
REGISTER r PROM s o
MAP
OE
- —
cLocK ce Al PL
o El R
= SEQUENCE|
e e e s e PG
. = \
cp cP | 3
1] a D A
—_—
Am2922 |
—— STATUS ¥
- REGISTER . CODE 'ROGRAM
. . MUX TEST | MEMORY
—e]
18)]
INSTRUCTION CONTROL
SPEED COMPUTATIONS | D D
] I DEVICE NO. DEVICE PATH PATH1 PATH 2 PIPELINE PIPELINE
' — REGISTER [=
|I 5 - REG CP—+Q 9 9 {c OE
- 2010 Io ¥ 40 = 1
] PROM ADDR TO QUT 30 ~ \-——4JI | X
! 2922 SET-UP R 5 - ——
2910 SET-UP PC - 64
TOTAL- B4 73 PaTH 1
o PATH2 — — — — o
Q)
< DATA BUS >
{o
a
INSTRUCTION Q MAP I o
REGISTER r PROM ot
MAP
OF /lS’T.lcl(l
S &
CLOCK cP AmzRi0 PL
— SEQUENCER
3
PC
. 1
cp cp
o Q o
—-
Am2922
—_— STATUS CONDITION X
- b REGISTER L CODE p| RAM
. . MUX TEST r_ MEMQRY
o
2] o
o PIPELINE PIPELINE
1# = 14 1= |
REGISTER REGISTER —_—
8,9, 15 8,9,15 8,9,15 8,9,15 ars cp oF
DEVICE NO. DEVICE PATH PATH 1 PATH 1 PATH 2 PATH 2
4 2510 CPioY 2 54 26 54 _—I‘-" I—"
PROM ADDR to QUT 30 30 30 30
2922 SET-UP R 5 5 5 5
. T PATHY —4——————
TOTAL-ns &1 1] 61 a9
PATH2 —— —— = — MPR-466

g Figure 7. Propagation Delay Calculations on the Am2910 Microprogram Sequencer (Cont.).
(/ 15

a)
DATA BUS
[+]
Y -
INSTRUCTION | @ MAP B]
A PROM
OE
cp
CLOCK l
T[22 i
cp cP cP i o cp D cp Ib
o 0 STK STK]
a i | 5051 5¢51
. STATUS s [l ¥ Am2911 Am 1 Am2911
REGISTER cl == SEQUENCER SEQUENCER SEQUENCER
. - Mux |
p— | L I =5 Cnsa F — Cnts
|Y ! ¥ |
PATH 1
PATH2 —— o e — A
CONDITIONAL JUMP OPROGRAM
SPEED COMPUTATIONS MEMORY
| DEVICE NO.| DEVICE PATH | PATH1 PATH 2] |
I i
| 2s22 CPIp Y 21 21 -
| 288114 TEST 10 PL 25 25 I o o
§ - REG OEto Y 13 13 e
2911 DtoY 9 PIPELINE PIP Py
PROM ADDR to OUT 0 - RECEER cp L)
2922 SET-UP R 5 =
2911 Do Craig - 14 .4 b
2911 Cn 10 Crsa = 9 l l N —|
2811 SET-UP Cp, - 15 R - =
= j
TOTALns | T s erc
- - MPA-467
b)
DATA BUS
(1]
Y
INSTRUCTION MAP Y
PROM
cLoCK
MR cP * o cP o CP I D
+] STK STK STK
P - T e SaS g =) 5.5,
—— AmINE11A ses‘_
. STATUS CONDITION ¥ MNEXT 2911 Am2911 | Am2911
REGISTER CODE TEST ADOR QUENCER SEQUENCER EQUENCER
. Mux CONTROL
— E (7] = v e
[FL i] L\r ¥ ¥ |
PATH 1
PATH 2 —— —— —— A
OPROGRAM
CONDITIONAL JUMP MEMORY
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH 1 PATH 2 i!
S - REG CPioQ 9 9 ~ il z
2922 DioY 13 13
298114 TEST 10 § 25 25 i 5
2911 Sloy 19 = REGISTER i REGISTER
PROM ADDA to OUT 30
2922 SET-UP R 5 - = -
2011 S10Cpypy = 30 L
2011 C 10 Cpig - 9 1
2911 SET-UP G, - 15
TOTAL-ns 101 101 LG
MPR-468

Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design.

16

c)

DATA BUS
o
Y
INSTRUCTION | @ MAP G
REGISTER "t PAOM
TE
cp
CLOCK J_
]
cP scn MAP P { o P o cP ln
o o f STK STK STK
—_—
a L —g Befa) ey R |_Soss |
— u%_ Am29B11A
. STATUS o CONDITI X NEXT Am2911 Ama2g11 ! Am2e11
REGISTER CODE e ADODR EQUENCER
i . MUX CONTROL
ke [Eheeger——feec)
] L t 1 |v ¥ ¥ |
PATH 1 7
PATH2 — = — — —
CROPROGRAM
CONDITIONAL JUMP MEMORY
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH 1 PATH 2 U
2022 CPioQ 21 21 o o
29811A TEST10 S 25 25
211 | StoY 19 - PIPELINE FIPELINE GE
FROM | ADDR 10 OUT 30 - REGISTER P REGISTER [T
2922 SET-UPR 5 -
2911 S10 Cray 30 ¥ ¥
2911 Cnto Cpsg - g
2911 o '. SET-UP C, = 15
TOTAL-ns | 100 100 =
MPR-485
d)
DATA BUS
D
e e
3
a MAP ((_
PROM
oE——
= |
CLOCK |
1]| S——
cp cp 1 cF { [cP I D cP l b
D] ’ sTK STK / STK
a / 5SS S5 S5
— A m29B11A
. STATUS = cmmn— ———7" Nexr Amz91 amzfn Am2911
REGISTER m—— ADDR Ly SEQUENCER
. . MU CONTROL
| { J
— Cn Cr+a Crva
I L I 1 | ¥ ¥
PATH{ — —— = ——
PATH 2 14
L =
JUMP MAP T r th:ﬂg&nm
SPEED COMPUTATIONS ‘ |
DEVICE NO. DEVICE PATH PATH 1 PATH 2 I |
2922 CP1oY 21 21 L——__...._.__._._._
298114 TEST to MAP 25 25 2 -
MAP-PROM OEtwoY 18 18 B
PIPELINE PIPELINE
2011 DtoY L = REGISTER = REGISTER [~ |
PROM ADDA to OUT 30 5
2922 SET-UF R 5 - v -
2911 D10 Caia - 14 i
Cp 10 Crag 9
SET-UP G, 15
TOTAL-ns 102 ETC
MPR-470

Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design (Cont.).

17

€)
DATA BUS
o
¥
-—"'"-‘
N lo { —
RS T
OE
L l
CLOCK
| [
cP CP MAP CP { 5] CP D CP lp
[STK TR STK |
—
Q 5S4 554 551
— Amz9z2 Am28B11A
" STATUS & ¥ NEXT Am2911 Am29)1 Amzit
REGISTER cone = ADOR SEQUENCE
. . MUX CONTROL
—_— [Pc] Cn Cnsa - [h
1 BL { ' |\f ¥ ¥
PATH 1
PATH2 — — —— —— o
MICROPROGRAM
MEMORY
JUMP MAP
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH 1 PATH 2 IJ
S - REG CP1BQ 3) 2 2
MAP-PROM ADOR to OUT 25 25 5
| PIPELINE PIPELINE
am Dioy 9 = REGISTER P REGISTER |~]
PROM ADDR to OUT 30 -
| 2922 SET-UPR 5 - S
2011 D16 Chyy - 14 |
2011 CntoCriy - 9 1
2011 SET-UP C, - 15
TOTAL-ns 78 73 T
MPR-471
DATA BUS
]
Y
-] MAP Y
PROM
TE
icv
CLOCK
CP CP WAF CP i "] CP] P ; o
] STK. 5TK
a Sg% 8%
— AmS22 Am288] —— ay
N STATUS H ¥ NEXT r [——p— ATl] AmE T Am2911
REGISTER CODE TEST ADDI " SEQUENCER SEQUENCER SEQUENCER
. . Wux CONTRDL \
e H | \l ! e Crnta Crta
1 PL [¥ ¥
PATH1 —— T r f" |\'L =
PATH 2 N o ‘ [{a
PATH3 — = —— - —— J
1 r MICROPROGRAM
INSTRUCTION PATH T R e e MEMORY
SPEED COMPUTATIONS ‘
DEVICE NO. DEVICE PATH PATH 1 .] PATH 2 PATH 3] | |
bl 1 i
5 - REG cPioQ s | R +—H T——"'— 4 =
298114 1o § 25 25 | 25
281 Sy 19 = | T I PIPELINE 2_5_
| BROM ADDR TO OUT 30 H — REGISTER
| age2 SET-UPR 5 - -
2911 510 Cpyg = -
2911 Cn1o Chyg El - H
2911 SET-UP G, - | 15 -
2911 SET-UP 5TK - | - | 15
- + ETC
TOTAL-ns 88 l &8 49 MPR-472

Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design (Cont.).

18

9)
DATA BUS
0
¥,
a MAP N
o PROM
OE
lcp
CLOCK
cP CP MAP cP i_o CP] CP 10
o] STK STK STK
|
a S84 5054 581
- Am2922 Am29811A ;
STATUS coNpmon | ¥ NEXT Amzt1 Ama911 11
REGISTER L CODE = ADDR SEGUENCER SEQUENCER NCER
. MUX CONTROL
—_ E [= Crva %
. 3 I , |\r ¥ v])
A
PATH1 —m———————— I
PATH 2 MICROPROGRAM
MEMORY
CONTINUE
SPEED COMPUTATIONS]J
] DEVICE NO. DEVICE PATH PATH 1 PATH 2 o b
|
| 2o CPtoY 29 -
| via PG PIPELINE pipELNE | OF
| prOM AGOR: i3 OUT » AEGISTER e REGISTER
| 2922 SET-UP R 5 -
| 211 CP 10 Crag - ¥ ¥
| 2911 Cp 10 Crag - 9
| 2911 SET-UP Gy, - 15
l TOTAL-ns B4 58 ETC
MPR-473
h)
DATA BUS
]
¥
NsTRUCTION | @ MAP \
REGISTER o PROM
oE
<P
CLOCK l
cP cp WAP cP J_o cP o e I]
o D STK STK 5TK
a 505, S5 SoS1| |sTACK
— Amz9z2 Am298114
STATUS conDmion | ¥ NEXT Amzet1 Am2911 2911
REGISTER ' CODE —_— ADDR SEGUENCER SEQUENCER NCER
. MuX CONTROL
J— I FCE Cn Cora | f——Cnss
] L i [1 ¥ ¥ Y ”
PATH1 —mmm—————
A
PATH 2 =’ o e
MICROPROGRAM
JUMP STACK MEMORY
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH TH 1 PATH 2 U
2911 CPtoY - D D
via STACK
PROM ADDR to GUT 30 - PIPELINE PIPELINE | OF
saze SETUP R s i REGISTER o REGISTER
2011 CP 10 Cnia < 54
via STACK £ ¥
2911 Cate Cpia - 9
2011 SET-UP Cpy - 15
TOTAL-ns ‘ 74 78 ETC
MPR-474
Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design (Cont.).

19

DATA BUS
=]
¥
a MAP \/
A PROM
OE
lcp
CLOCK
CP cP MAR cP l] CcP 1] cp I 1]
D o STK STK STK
— = Iwucxl s 5,58
— AmzS2z fa.mzsena] bl —-
- STATUS . Y NEXT Am2911 Am2911 Am2911
REGISTER CODE TEST ADDR SEQUENCER SEQUENCER SEQUENCER
L] - Mux CONTROL
JE— Cn Crea Crva
1 PL T 1 ¥ ¥ ¥
A
PﬁTH 1 MICROPROGRAM
MEMORY
D D
CONDITIONAL PUSH
SPEED COMPUTATIONS . JR—— 3
REGISTER cP REGISTER
DEVICE NO. DEVICE PATH PATH 1
2022 CPIo Y 21] ¥
258114 TEST 1o SP 25
2911 | sET.uPsP 15
| TOTAL-ns | 61 | BE
MPR-475
Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design (Cont.).
DATA BUS
fo
L]
INSTRUCTION a MAP TD
REGISTER = PROM
oE G
cLoCK cF 5 2910
P SEQUENCER
]
cP CP ¥
21 a 2 A DO—
2922
—] STATUS CONDITION ¥
* REGISTER * CODE TEST MICROPROGRAM
. - MUX PROM
—]
I I
D o
. PIPELINE PIPELINE
REGISTER cP REGISTER —
B A
MPR-476

Figure 9. Using NAND and NOR Gates to Improve Am2910 Speed.

20

In order to compare the performance of the Am2810 with the
Am2911 and Am29811A, Table 5 is presented. Here the prop-
agation delays for the Am2911 and Am29811A are for a 12-bit
wide microprogram sequencer configuration. If a wider configu-
ration is used, only one additional carry inputto carry output delay
must be added to the appropriate paths of these calculations. A
12-bit wide Am2911/29811A configuration has been evaluated
so that an “apples to apples” comparison can be made.

Asis shown in Table 5, anumber of combinations are possible for
the longest AC propagation delay paths for these microprogram
sequencers. First, the continue instruction can be executed the
fastest of any of the microprogram instructions if the continues
are sequential. That is, from the second continue on, the typical
microcycle can be either 61 or 64ns respectively. To achieve this
speed, itis required that various signals throughout the architec-
ture be stable such that the only paths that enter into the propaga-
tion delay calculation are the clock-to-output of the microprogram
counter, the microprogram memory and the pipeline register
setup.

The second group of instructions shown in Table 5 show some
examples of instruction execution and jumping. These examples
assume that the MAP and OE outputs are not used as described
earlier. These calculations apply to several of the instructions but
not to all the instructions. For the Am2910 sequencer all of the
propagation delays are around 80 to 85ns; while for the
Am2911/Am29811A combination, the propagation delays range
from about 80ns to 100ns, depending on the instruction. It should
be noted that certain other instructions such as push and condi-
tional load counter should be evaluated to determine the speed at
which they can be executed.

The last two instructions shownin Table 5 are for jumps where the

- output enable of the field supplying the address to the D inputs of

the microprogram sequencers are controlled by either the
Am2910 or Am29811A. Notice that for Am2910 configuration, the
jump map represents the longest propagation delay path and is
103ns typical. Also, for the Am2911/Am29811A combination, the
jump map instruction also represents the longest propagation
delay path and is 109ns typical.

It is not the purpose of this exercise to show every possible
propagation delay path; but rather, to show the reader the
technique for computing propagation delays such that any design
can be evaluated and the worst case past derived. Even here, not
all ofthe worst case numbers shown in Table 5 have been derived
in Figures 7 and 8. This was done intentionally and is left as an
exercise for the student.

If the Am2909 or Am2911 and the Am29811A are combined into
microprogram sequencers of either 8 bits in width or 16 bits in
width, the calculations need only be modified slightly to determine

the microcycle times. Obviously, if two Am2911s are used, the
worst case propagation delay paths do not change. However, if
four Am2911s are used, the carry path will become the longer
propagation delay path on several of the computations. This may
be offset however since larger microprogram PROMs may be
used if 64K of microcode is actually being addressed or high
power buffers may be placed between the Am2911 outputs and
the microprogram memory to provide sufficient drive for such a
large microprogram store.

In addition, the Am2909 and Am2911 may be used without the
Am29811A where the user wishes to generate a special purpose
instruction set or very high speed control of the internal multi-
plexer and push pop stack. In some, designs as much as 25 to
30ns, typical, can be removed from the longest propagation delay
paths of the design by using high speed Schottky SSI. While this
has not been the typical case, some designers have used it to
provide a performance improvement not achievable with a stan-
dard Schottky condition code multiplexer and the Am29811A
next address control unit.

APPLICATIONS

It should be understood that the microprogram state machine
built using either the Am2910 or the Am2911/29811A represents
a general purpose state machine controller. Applications for this
type of microprogrammed control include uses in minicomputers,
communications, instrumentation, controllers and peripherals as
well as special purpose processors. Typically, the micropro-
grammed approach provides a more structured organization to
the design and allows the design engineer the greatest flexibility
in implementation.

It is important to understand that microprogrammed machines
need not be part of a typical minicomputer type structure. That is,
a general purpose minicomputer usually has a machine instruc-
tion set that is totally different from its microprogram instruction
control. As such, itis essential that the designer new to computer
design and microprogram design understand the difference be-
tween a machine instruction and a microprogram instruction. This
differentiation is shown in Figure 10 where a typical 16-bit
machine level instruction is demonstrated as compared with a
typical microprogram instruction. The machine level instruction
usually consists of 16 bits and in this example, these bits are used
to provide the op code, source register definition and destination
register definition. The microprogram instruction on the other
hand usually consists of anywhere from 32 to 128 bits in a typical
minicomputer type design. Here, the bits are used to control the
elemental functions of a machine such as the Am2910 instruction
control and condition code multiplexer, the Am2903 source, ALU
function and destination control and so forth. For purposes of this
explanation, let us assume that the machine level instruction is
available to the machine programmer while the microprogram

TABLE 5. SUMMARY OF LONGEST AC PATHS FOR MICROPROGRAM SEQUENCERS.

Am2911

Instruction Am2910 Am29811A Comments

Continue 61 64 The fastest instruction.
Assumes sequential continues!
Instruction Execute 84 88 If the MAP and PL cutput§ e
Jump Map (no OE) 83 78 are not used.
Jump PL (No OE) 78 101
Jump Map (via OE) 103 109 If the MAP and PL outputs
Jump PL (via OE) 98 104 are used.
21

MACHINE LEVEL INSTRUCTION

DESTINATION SOURCE
OF CODE A1 R2
15 817 al3 o
MICROPROGRAM INSTRUCTION
BRANCH | Am2810 | CC IR Am2903 | Am2903 | Am2803 | Am2903 | STATUS | SHIFT ETC
ADDRESS INST Mux Lo A&B |SOURCE ALU DEST LOAD MuX

l[32 TO 128 BITS 1

MPR-477

Figure 10. Understanding Machine and Microprogram Instructions.

instruction is not available to the machine programmer at the
assembly language level. Let it suffice to say that this assumption
is not necessarily valid in machines being designed today.

Perhaps one of the most typical applications of the micropro-
grammed computer control unit state machine design is as the
controller for a minicomputer. Here, the function of the micropro-
grammed controller is to fetch and execute machine level instruc-
tions. The flow required to perform this function is depicted in
Figure 11 which should be representative for all general purpose
type machines. Figure 11 shows that after initialization, the com-
puter control unit simply fetches machine instructions, decodes
these instructions and then fetches the required operands such
that the original instruction can be executed. This cycle of fetch-
ing and executing instructions is performed without end. Such
things as hardware halts or resets are ignored and should be
assumed to only cause re-initialization.

Once the flow of a typical computer control unit is understood, itis
possible to evaluate a number of architectures using the Am2910
or Am2911/Am29811A such that the flow diagram of Figure 11
can be implemented.

STATE MACHINE ARCHITECTURES

After a machine instruction is fetched from memory, it is normally
placed in the machine instruction register as described in Figure
6. Then the op code portion of the instruction is decoded so that a
sequence of microinstructions in the microprogram memory can
be selected for execution. Each microinstruction is fetched and its
contents placed in the pipeline register as shown in Figure 6 for
execution.

While the architecture of Figure 6 is recommended and has been
used throughout the preceding portion of this chapter, it should be
understood that a number of architectures are possible using
these microprogram sequencers. The normal flow in fetching
microinstructions is to determine the address of the next mi-
croinstruction, fetch the contents at that address and set up this
data atthe input of the pipeline register such that it can be clocked
into the pipeline register for execution. If we assume that a clock
is being used to clock the pipeline register, the Am2910, the
machine instruction register and the Am2903 microprocessor bit
slices, it is possible to define a number of computer control unit
designs where the relationship between the clock edges is dif-
ferent.

There seem to be a minimum of seven different architectures that
can be defined based on placing registers in the appropriate
signal paths and storing data on the low-to-high transition of the

22

INITIALIZATION

FETCH MACHINE
INSTRUCTION

|

DECODE INSTRUCTION

MNEED
OPERAND?

EXECUTE
INSTRUCTION

Lo

FETCH OPERAND

OPERATE
ON
OPERAND?

EXECUTE

ol

MPR-478

Figure 11. Computer Control Flow Diagram.

clock. For purposes of this discussion, we will assume that all
clocked devices will operate using the same clock such that
changes will occur on the LOW-to-HIGH transition of the clock.
While itis possible to use multiphase clocks and tie different clock
phases to different devices, that type of system operation will not
be described here. In all cases, we will be talking about the flow of
signals between LOW-to-HIGH transitions of the clock. Typically,
acycle is started by a clock edge at a device and the signals begin
to flow from one device to the next until a set-up time to a clock
edge results. Then, the next microinstruction is executed in

\ i 4

exactly the same manner. There are three different identifiable
types of microinstruction sequences where only one register is in
the signal flow loop. The first of these we shall call an Address-
Based microinstruction cycle. It usually starts with the address of
a microprogram memory word being stored in a register by the
clock. This address has been determined by the previous mi-
croinstruction. This address then accesses the microprogram
memory to fetch its contents which are presented at its outputs to
control the Arithmetic Logic Unit and the results of the Arithmetic
Logic Unit function may be used to determine the next address
selected that will be stored in this microprogram address register.
This is shown as Figure 12a. The second type of microprogram
architecture is called Instruction-Based. Here, the register is
placed at the output of the microprogram memory as shown in
Figure 12b. Again, the cycle consists of executing the mi-
croinstruction in the ALU; perhaps using the results of the opera-
tion to determine the address of the next microinstruction and
then fetching the contents of that microinstruction and setting this
new data up at the input to the register. The third basic architec-
ture for microprogram control is called Data-Based. Here, aregis-
ter is used to hold the status data from the ALU and this is the
determining clock point for the cycle. Here, the status register
initiates the selection of the next address from which the micro-
programmed data is fetched and this microprogram instruction is
used to execute a new function in the ALU thereby setting up the
results for the status register. This scheme is shown in Figure
12c. Note that this scheme requires an additional register at the
output of the microprogram memory to hold a portion of the
microprogram instruction for controlling the condition code mul-
tiplexer and Am2910 instruction set. These primitive architec-
tures for microprogrammed control demonstrate the three points
atwhich a register can be placed to provide a start and an end for
the microcycle. In a general sense, each of these three architec-

tures is one level pipelined. This, however, is not the definition
normally associated with pipelining of microprogram control.

If combinations of the above described architectures are im-
plemented, an improvement in performance will be realized. In
each of the three architectures thus described (address-based,
instruction-based, and data-based), all of the signal paths are in
series and must be transcended before a microcycle can be
completed. They are quite easy to program, however, since all of
the tasks are completed in the loop before proceeding to the next
microinstruction. As stated earlier, these tend to be the slowest of
the possible architectures for microprogram control. This disad-
vantage can be overcome by using a technique referred to as
pipelining in microprogram control. In a pipeline architecture, we
overlap the fetch of the next microinstruction while we are exe-
cuting the current microinstruction. This is achieved by inserting
additional registers in the overall path such that we can hold the
signals step-by-step. There are three possible combinations of
the above mentioned architectures that can be utilized in micro-
program control. These are address-instruction-based,
address-data-based, and instruction-data-based. While each of
these represent two stages of pipelining, we normally refer to
these as the pipelined architectures. These are shown in Figure
12d, 12e and 12f. It is the instruction-data based architecture that
is recommended for the Am2910 and provides the overall best
trade-off in cost versus performance.

The last possible architecture using registers in the signal path is
a combination of all three architectures and is called address-
instruction-data-based microprogram control and is shown in
Figure 12g. Here, three stages of pipeline are involved and we
normally refer to this as two-level pipelined archiecture. Needless
to say, if no pipelining were involved at all, we would have a ring
oscillator.

(a) Addressed Based

p—— CLOCK

MICROPROGRAM
MEMORY

1A
| |t] E AmZI0IA

ALl
50A)
STATUS

MPR-478

Shaded Lines Show Required Signal Flow to Complete a Microcycle:
Determine Address, Fetch Instruction and Execute.

(b) Instruction Based

MAP

Am2a10

l A+l

MICROPROGRAM
MEMORY

p—— CLOCK

Ha+1)

REGISTER

1 (A}
I ; ! AmZI01A SLATUS

o sial
4

MPR-480

Figure 12. Standard Microprogram Control Architectures.

(c) Data Based

CLOCK

REGISTER

Ta-1)

MPR-481
(d) Instruction-Data Based (e) Instruction-Address Based
Map CLOCK
A 10
T
REGISTE|
| 1Al
A
Sia)
MPR-482 MPR-483

Shaded Lines Show Required Signal Flow to Complete a Microcycle:
Determine Address, Fetch Instruction and Execute.

Figure 12. Standard Microprogram Control Architectures (Cont.).
24

(f) Address-Data Based

MAF CLOCK
=] Mux
MICROPROGRAM
MEMORY,
MPR-484

Shaded Lines Show Required Signal Flow to Complete a Microcycle:
Determine Address, Fetch Instruction and Execute.

(g) Instruction-Address-Data Based

MAP
Am2910 o ——
——
l 4 A+2
PIRELINE '
REGISTER 21 TS
‘ A1
MI{‘.;OEMHGYR.&M cLOCK
T HA+1)
PIPELINE
REGISTER #2
I 1ia)
S Am201A
. ALY
=
l SiA)
STATUS
REGISTER
T 5(A-1)
MPR-485

Figure 12. Standard Microprogram Control Architectures (Cont.).

The advantage of the instruction-data-based architecture is that
the address and contents of the next microinstruction are being
fetched while the current microinstruction in the pipeline register
(Figure 6) is being executed. This allows a shorter microcycle
since the microprogram memory fetch and ALU execution can be
operated in parallel. The results of this type operation are dem-
onstrated in Figure 13 where we see a typical timing diagram of
the microprogram execution of the address-data-based instruc-
tion architecture. It should be noted that when the computational
aspects of a microinstruction are not completed in the same
microcycle, they obviously cannot be used to determine the ad-
dress of another microcycle until the computation has been com-
pleted and stored in the status register. Thus, this pipelined
architecture offers significant speed improvement except in the
case of certain conditional jumps. In other words, the conditional
jump may not use the status register information of the im-

mediately preceding microinstruction because the computation is
just being performed. For this architecture, the conditional jump
fetch must be executed on the cycle after the status register
contains the proper execution results. This can be seen by study-
ing Figure 13. In most microprogram designs this is not a disad-
vantage because other housekeeping and ALU operations can
be performed while the address of the next microinstruction is
being determined using the current contents of the status regis-
ter. While it is not directly pertinent to the discussion at this time,
let us point out that the Am2904 has been designed such that the
machine architect can utilize both instruction-data-based ar-
chitecture as well as instruction-based architecture if no house-
keeping is required. Thus, the Am2910 and Am2904 can be used
in a variable architecture cycle to achieve maximum performance
for the machine.

|—— p-CYCLE——-I

& LI

CcLOCK

FETCH FETCH
MEMORY peINST i wINST i+1
PIPELINE REG pANST i=1 wINST i
ALU EXECUTE EXECUTE

wINST i—1 INST
ACCUMULATOR & RESULT OF RESULT OF
STATUS REG wINST (=2 ueINST (=1

L

L L

FETCH FETCH FETCH
peINST i+2 wINST 143 peINST i+4
HeINST i1 peINST i+2 wINST (43
EXECUTE EXECUTE EXECUTE
pANST i+1 ueINST 142 wINST i+ 3
RESULT OF RESULT OF RESULT OF
weINST § weINST i+ 1 weINST i+2

MPR-486

Figure 13. Timing Diagram of Microprogram Execution.

25

< DATA BUS >
l INSTRUCTION REG]
1 6
* TEST EN

n
ADDR LOAD | <. SYSTEM
1

CONTROL

lg_a Yo-11 — ADDR
INST 12 12

MAPFING v Dy PL
PROM 4 =

MICRO- Am2a18
FULL f}—— PROGRAM PIPELINE

Am2910 MEMORY REGISTER

E
=
=
o

73- OTHER

g g
m
w
-
=]
]
2
=
-

. I

VECTOR 12
MAPPING
PROM

Am2922 4
+]cr STATUS MUX POL .,j

ADDR Oy Dy Dy D3 Dy Ds Dg Dy

VECT

Am2a14

INTERRUPT
Am25LS3TT —
| | I [| or STATUS REG

Oy D3 Dy Dy Dy

w—tl TTTTTT]

Q@ 0 G; Q3 Q; 05 Qg

MPR-487

Figure 14. Typical Am2910 Microprogram Control Unit.

The Am2910 in Computer Control

A general state machine design using the Am2910 is shown in
Figure 14. Here, all three output enables are used to advantage in
order to control the mapping PROM, pipeline register and vector
PROM in this design. This design is very straightforward and in 21
fact is identical to that shown earlier. 1

One area that should not be overlooked is that of initializing the s Ango

Am2910 at power up. One technique for accomplishing this is to :
use a pipeline register with a clear input to provide all LOWSs to the a
instruction inputs of the Am2910. This will cause a reset of the
stack in the Am2910 and force the outputs to the zero word and
microcode which can be used for the initialization routine. Typi-
cally, power up will result in the firing of a timer which can be |
connected to the clear input of the register. Figure 15 shows the Q@ G G QG
technique for initializing the Am2910 using this method. cLEAR —| ELR P f— CLOCK
Dy Dy Dz Dy

One advantage of the Am2909 when compared to either the
Am2910 or Am2911 is the OR inputs to the microprogram ad- BE
dress field. These OR inputs allow two, four, eight or 16-way
branching for each device if proper control is used. This control e arA DGRAM
can be accomplished using the Am29803A, 16-way branch con-

trol unit. A typical computer control unit using the Am2909,
Am2911, Am29803A and Am29811A is shown in Figure 16. In
this example, the least significant microprogram control se-

MPR-488

quencer is an Am2909 and the two more significant sequencers
are Am2911s. Figure 15. Initializing the Am2910.

26

< OATA BUS >
INSTRUCTION REGISTER
QP CODE ’ OTHER
o, ADDRESS AmZ909 AND Am2011 MICROPROG RAMSEQUENCER
STARTING FE. PLP
—TC COUNTER ADDRESS ~ OF f=— STACK POINTER
DECODER I
LOAD/COUNT OUTPUT
REGISTER
SUBROUTINE
AND LOOP STACK
MICROPROGRAM
COUNTER REGISTER
{ FLAGS
o R F R 4
S5 NEXT ADORESS
Sy MULTIFLEXER CREREITER e
QUTPUT
% AmZIB03A
or JEWAY
Of BRANCH
CONTROL UNIT
[
z z 2
e 4
CARRY —=i 7 Am2EE11A
o MNEXT
ovR —=1 6 3 = ADDRESS ADDRESS
x
ZERQ —=1 & zd E FOLARITY CONTROL MICROPROGRAM MEMORY
oz T e TEST
& 5
SIGN =] & = g CONTROL
52 =] BRANCH NEXT ADDRESS OTHER
INRFT —e=] 3 3 ADDRESS SELECT
ETC —e=f 2 - l 1 l
! 1
L —-[GE FIPELINE REGISTER |
1 4 i |
TO Am2801A
3 OR Am2903
OTHER
MPR-313

Figure 16. A High Performance Microprogram Controller Using the Am2909, Am29811A and Am29803A.

DETAILED DESCRIPTION OF THE Am2911 AND
Am29811A IN A COMPUTER CONTROL UNIT

The detailed connection diagram of a straight-forward computer
control unit is shown in Figure 17. This design features all of the
next address control functions described previously and a few
features have also been added.

Referring to Figure 17, the instruction register consists of two
Am25LS377 Eight-Bit Registers with Clock Enable. These reg-
isters are designated as U1 and U2 and provide ability to selec-
tively load a 16-bit instruction. This particular design assumes
that the instruction word consists of an eight-bit op code as well as
eight bits of other data. Therefore, the op code is decoded using
three 256-word by 4-bit PROMs. The Am29761 has been
selected for this function and is shown in Figure 17 as U3, U4 and
Us.

The basic control function for the microprogram memory is pro-
vided by the Am2911s. In this design, three Am2911s (U8, U7,

Mote: Figures 17, 18, 20, and 24 are at back of the book.

27

and UB8) are used so that up to 4K words of microprogram mem-
ory can be addressed. The microprogram memory can consist of
PROMs, ROMs, or RAMSs, depending on the particular design
and the point of its development. This particular design shows the
capability of a 64-bit microword; however, the actual number of
bits used will vary from design to design.

The pipeline register associated with the computer control unit
consists of five integrated circuits designated U16, U17, U18,
U19 and U20.

One of the features of the architecture depicted in Figure 17 is the
event counter shown as U9, U10 and U11. This event counter
consists of three Am25LS163s connected as a 12-bit counter.
The counter can be parallel loaded with a 12-bit word from
pipeline registers U18, U19 and U20. The multiplexer and D-type
flip-flop (U21 and U22) at the counter overflow output (U9) is
present to improve system cycle time and will be described in
detail later.

This design also features a 16-input condition code multiplexer
using two Am745251s, which are designated U12 and U14.
Condition code polarity control capability has been added to the
design by using an Am745158 Two-Input Multiplexer designated
as U13. The W outputs and Y outputs from U12 and U14 have
been connected together but only one set of outputs will be
enabled at a time via the three-state control signal designated as
Rag and Ryp. Since the Y output is inverting and the W output is
non-inverting, the two-input multiplexer, U13, can be used to
select the test condition as either inverting or non-inverting. This
allows the test input on the Am29811A Next Address Control
Unit, U15, to execute conditional instructions on either the in-
verted or non-inverted polarity of the test signal. For example, a
CONDITIONAL BRANCH may be performed on either carry set
or carry reset. Likewise, the same CONDITIONAL BRANCH
might be performed on either the sign bit as a logic one or the sign
bitas a logic zero. Note that the Am29811A Next Address Control
Unit has eight outputs. Four outputs to control the Am2911°s S,
Sy, PUP and FE inputs. Two outputs to control the three-state
enables of the devices connected to the D inputs, i.e., a map
enable (MAP E) to select the mapping PROMs and a pipeline
enable (PL E) to enable the three-state Am2918 outputs which
make up a 12-bit wide branch address field. The remaining two
Am29811A outputs are for loading and enabling the Am25LS163
counters. CNT ENABLE from the Am29811A is active-LOW while
the Am25L5163 counter requires an active-HIGH enable, there-
fore CNT ENABLE from the Am29811A is passed through one
section of the Two-Input Multiplexer (U13) for inversion. An alter-
native counter, the Am25L5169, has enable as active-LOW;
therefore, this inversion through U13 is not required.

Atthis point, a discussion of the typical operation of this computer
control unitis in order. First, bits 0-11 of the microprogram mem-
ory output word, are connected to the pipeline register desig-
nated U18, U19 and U20. The Am2918 has been selected for this
portion of the pipeline register because of its continuous outputs
and three-state outputs. The three-state outputs are connected to
the D inputs of the Am2911 to provide a branch address
whenever needed. These 12 bits are designated BRy-BR44. The
Q outputs of these same Am2918s are designated Ry-R,; and
are connected to the parallel load input of the Am25LS163
Counters. Thus, the counter can be loaded with any value be-
tween 0 and 4,095. Many designs will take advantage of Ry-R;4
and use it as a general purpose field whenever the counter is not
being loaded or a jump pipeline is not being performed. Using a
microprogram memory field for more than one function (branch
address and counter load value in this example) is called FOR-
MATTING and will be covered in greater detail later. The other
two devices in the pipeline register shown on the architecture of
Figure 17 are U16 and U17. First, U17 receives four bits (12, 13,
14 and 15) from the microprogram memory to provide four-bit
instruction field to the Am29811A. This four-bit field, designated
Ri2-Rys, provides the actual next address control instruction for
the computer control unit. Ry is the polarity control bit for the test
input and is connected to the select input of the Am745158
Two-Input Multiplexer. When Rqg is LOW, the signal at the
Am29811A test input will be inverted, but when Ryg is HIGH, the
test input will be non-inverted.

The Am74§175 has been used as part of the pipeline register
(U16) because it has both inverting and non-inverting outputs.
Signals Ry7, Ryg and Ryg are used to control the One-of-Eight
Multiplexer (U12 and U14) A, B and C inputs. Pipeline register
output Ry and Ry are used to enable either the U12 outputs or
the U14 outputs such that a one-of-sixteen multiplexer function is
implemented. In this design, the TEST 0 input of U14 is con-
nected to ground. This provides a convenient path for converting

Note: Figures 17, 18, 20, and 24 are at back of the book.

28

any of the conditional instructions to non-conditional instructions.
That is, any of the conditional instructions can be executed un-
conditionally by selecting the TEST 0 input which is connected to
ground and forcing the polarity control to either the inverting or
non-inverting condition. This allows the execution of uncondi-
tional JUMP, unconditional JUMP-TO-SUBROUTINE, and un-
conditional RETURN-FROM-SUBROUTINE instructions.

Bit 21 from the microprogram memory utilizes a flip-flop in U17 as
part of the pipeline register. This output, R4, is used as the
enable input to the instruction register. Needless to say, other
techniques for encoding this enable function in a formatted field
could be provided.

A HIGH PERFORMANCE COMPUTER CONTROL UNIT
USING THE Am2909 AND Am29803A

The high performance CCU (Figure 18) is of a similar basic
design as the previously described CCU. The major differences
are, referring to Figure 18, the addition of an extended enable
control (U16), a vector input (U24 and U25), and an Am29803A
16-way Branch Control Unit (U23). These performance en-
hancements are more related to function than to actual circuit
speed. The use of these enhancements by the microprogram
provides greater flexibility in controlling a machine's environ-
ment, and can reduce the microinstruction count required to
perform a particular task, which has the effect of increasing
overall system throughput.

In describing this high performance CCU design, those sections
which remain unchanged from the previous description (Figure
17), will not be covered again. This includes the mapping
PROMs, sequencer, Am29811A, counter, condition test inputs
and associated polarity control, and the pipeline register. The
areas that will be covered are: extended enable control (U16),
Vector inputs (U24 and U25), and the Am29803A 16-way Branch
Control Unit (U23).

Extended Enable Control

Extended enable control is accomplished via an Am745139 dual
two-to-four line decoder in conjunction with the Am29811A next
address control unit. In Figure 17, PL E and MAP E of the
Am29811A were connected directly to the components that they
are to control (pipeline registers and mapping PROMSs, respec-
tively). Likewise, CNT LOAD and CNT ENABLE are connected
directly to the counters that they control (with the exception that
CNT ENABLE requires_inversion when using Am25LS163
counters). In Figure 18, PL E, MAP E, CNT LOAD and CNT
ENABLE go to the inputs of the Am745139 two-to-four line de-
coder (U16). When either PLE or MAP E is LOW, then either 2Y,
or 2Y, of U16 is LOW and either the pipeline branch address
registers or mapping PROMSs are enabled. If both PL E and MAP
E are HIGH, then output 2Y; of U16 is LOW enabling the three-
state outputs of U24 and U25 which are alternate microprogram
starting address decoders (alternate mapping PROMSs), and
called VECTOR INPUT in this design. Likewise, CNT LOAD and
CNT ENABLE follow the same rules, enabling the counter to load
or count via 1Yy and 1Y of U16.

Vector Input

The “Vector Input” provides the system designer with a powerful
next starting address control. For example, one possible use
might be as an interrupt vector. For instance, use the “Interrupt
Request” output of an Am2914 Vectored Priority Interrupt Con-
troller (or group of Am2914s) as an input to one of the conditional
test inputs of multiplexers (U12 or U14). Then connect the
Am2914 Vector Out lines to the vector mapping PROMs (Vector
input U24 and U25). The microprogram then could, at the appro-

O

O

v

o’

priate time, test for a pending interrupt and if present, jump in
microprogram memory directly to the routine which handles the
specific interrupt as requested via the Am2914 Vector Output
lines. This routine will take the proper steps to preserve the status
of the interrupt system, and then will service the interrupt. This is
one of many possible uses for the Vector Input. Other possible
uses include both hardware and software “TRAP" routines and
so forth. As can be seen, the design presented here uses the
Vector Enable line (output 2Y; or U16) to enable an alternate
starting address input at the Am2911. This, however, does not
preclude the use of other devices in place of mapping PROMs as
the D-input vector source.

It should be understood that this does not accomplish a “micro-
interrupt” function in that it is not a random possibility. Instead a
microprogrammed test is made and an alternate microroutine is
performed. A true “microprogram interrupt” is one that could
occur at any microinstruction. The Am2910 does not handle this
case internally.

Am29803A 16-Way Branch Control Unit

The Am29803A provides 16-way branch control when used in
conjunction with the Am2909 bipolar microprocessor sequencer,
and is shown as U23 in Figure 18 with its pipeline register U22.
The Am29B03A has four TEST-inputs, four INSTRUCTION-
inputs, four OR-outputs, and an enable control. The four OR-
outputs connect directly to the Am2909 OR-inputs (U8 in Figure
18). The four INSTRUCTION-inputs to the Am29803A provide
control over the TEST-inputs and OR-outputs, and are provided
by the microprogram via the pipeline register U22 (Figure 18).

Basically, the INSTRUCTION-inputs (lg-l3) provide sixteen in-
structions (0-F4) which can select sixteen possible combinations
of the TEST-inputs and provide a specific output on the OR-
outputs depending upon the state of the inputs being tested. (The
subscript 16 refers to basic 16.) All possible combinations of
instruction-inputs, TEST-inputs and OR-outputs are shown in
Figure 19.

Note that instruction zero does not test any inputs (a disable
instruction). Instructions 1, 2, 4 and 8 test one input and can
cause a branch to one of two words. Instructions 3, 5,6, 9, 10 and
12 test two inputs and can jump to one of four words (a 4-word
page). Instructions 7, 11, 13 and 14 test three inputs and can
jump on an eight word page. Instruction number 15 tests all four
inputs and the result can jump to any word on a sixteen word
page.

USING THE Am29803A

In the architecture of Figure 18, the Am29803A allows 2-way,
4-way, 8-way or 16-way branching as determined by selectable
combinations of the TEST-inputs. Referring to Figure 19, the
ZERO instruction (all instruction bits LOW) inhibits the testing of
any TEST-inputs, thus providing LOW OR-outputs. Any single
TEST-input selected (Tg, T4, T, or T3) will result in OR, being
HIGH or LOW in correspondence with the polarity of the selected
TEST-input. Selecting any combination of two TEST inputs re-
sults in the outputs ORy and/or OR; being HIGH or LOW, follow-
ing a mapped one-to-one relationship, i.e., ORy and OR; will
follow the TEST-inputs, but no matter which pair of TEST-inputs
are selected, their HIGH/LOW condition is mapped to the ORg
and OR; outputs. Likewise, selecting any three TEST inputs, will
map their HIGH/LOW condition to the ORp, OR4 and OR, out-
puts. Selecting all four TEST-inputs, of course, causes a one-to-
one relationship to exist between the HIGH/LOW conditions of
the TEST-inputs and the corresponding OR-outputs. Refer to
Figure 19 to verify the relationships between INSTRUCTION-
inputs, TEST-input, and OR-output. It is very important that the

Mote: Figures 17, 18, 20, and 24 are at back of the book.

29

mapping relationship between these signals be completely un-
derstood. When using the Am29803A TEST-OR capability as
shown in Figure 18, the microprogrammer must position the
applicable microcode within microprogram memory so that the
low-order address bits are available for ORing. Sequencer in-
structions using the Am2909/2911 D-inputs (JRP, JSRP, JP and
CJS in particular) are ideally suited for the Am29803A TEST-OR
capability. The jump-to-location, available via pipeline BRy-BR 4
orthe Am2909/2911 register, can contain the address of abranch
table. A branch table is merely a sequential series of uncondi-
tional jump instructions. The particular jump instruction executed
is determined by the low-order address bits; that is, the first jump
instruction in a branch table must start at a location in micropro-
gram memory whose low-order address bit (or bits) is zero. If a
single Am29803A TEST-input is selected (2-way branching) then
only the least significant bit in the beginning branch table address
needs to be zero. Two Am29803A TEST-inputs selected (4-way
branching) requires that the branch table start on an address with
the low-order two bits equal to zero; 8-way branching requires
three low-order zero bits, and 16-way branching requires four
low-order zero address bits. Understanding this branch control
concept is really quite simple. The branch table is located in
microprogram memory beginning at a location whose address
has sufficient low-order zero bits to accommodate the number of
selected Am29803A TEST-inputs. If, for instance, three TEST-
inputs were selected, the first jump instruction in the branch table
must be at an address whose low-order three bits are zero, such
as address OF8,5. The second jump instruction in the branch
table would begin in microprogram memory address 0F94¢. The
third jump at location 0F A, the fourth at OFB4g, etc. Through all
eight locations (0F845-0FF¢). Assume the following pipeline in-
struction (referring to Figure 18): (1) U22 selects three
Am29803A TEST-inputs, (2) U18 instructs the Am29811A Next
Address Controller to select the Am2909/2911 D-inputs, (3) U16
enables the pipeline branch address as the D source, and (4)
U19, U20 and U21 supplies the address OF8,¢ as the branch
address. The Am29803A TEST-inputs will be ORed into the
low-order three bit positions, thus providing a jump entry into the
branch table indexed by the value of the OR bits. Each instruction
in the branch table is usually a jump instruction, which allows the
selection of a particular microcode routine determined by the
value presented at the Am29803A TEST-inputs. These jump
instructions are the first instruction of the particular sequence.
There are, of course, many other ways to use the Am29803A
16-way Branch Control Unit.

The microprogram memory address supplied via an Am2909
sequencer can be modified by the Am29803A 16-way Branch
Control Unit. Remember, however, that the microcode as-
sociated with this address modification relies on certain address
bits being zero, therefore this microcode is not arbitrarily relo-
catable. The above discussion describes using the D-input and
branching to provide low-order zeroes to use the OR inputs.
Through proper design, the Register, PC Counter, or File can be
used equally well.

THE COMPLETE COMPUTER CONTROL UNIT
USING THE Am2910

A detailed connection diagram for a straightforward computer
control unit using the Am2910 is shown in Figure 20. This design
utilizes the Am25LS377 as U1 and U2 to implement a 16-bit
instruction register. The op code outputs from the instruction
register drive three Am29761 PROMs to perform the op code
decoding function. These are shown in the diagram of Figure 20
as U3, U4 and U5. The Am2910 sequencer (U6) is used to
perform the basic microprogram sequencing function.

* - B S T L. v ek R
=
W B e - Bl S =4 IRl =) e = e P e e s i e s o (P e o . . o R . o (. o . . o P T o . Y . . 5 BT ST Y. ST T ST S ST ST ST ST T
i)
m Bl) R B R o= of SN D B e [N [e o NP e e 8 N o e o O BFPRTY, o of D o o (N D . O R o off . o ol P o N D o) R, 5. JUONE. 2. J BN ENE. . SUIEE. - SE BT - ST
™
m el el e e e e | e I I e e [R I I [[O S e e e e s (S S [[S T e e o o | . e e e o O (O T . o e e o wad d J T T I T d DI ITITT
[
W Sld| A | A | ad|dd | dd g s g aa|agadfad | Ao d oS | dad | da g0 3| d 00 3 4 3| dJJ IS J W AT TIIITTT
_.IO E e o L D o e o - (P s s) [g D o e o s o s o [(O e s o 202 O e O e o o B ol [0S0l A s N s o s o B EL i it i o (T e e e o s o e o e O e o e 4
_.“I gl et O e o O e e o - 4 [e i O s e o O e s off [b 30 I e s o [O s 0 O s s ol -l I T " " I T o B i B o e dAIIITI J AT T J I T A AT T
_.m./. KKK | XK KHHEK| I (AT [T T | Jddd T T T T (HNX | MW | WY KRR KNSR | I I | T T T T (T T ITT A ddd I T I I I IJATTITT
_Mc MMM MR H K R MMM MM (M HNHN XXX NN | UL | J I T | J T | J T I T T (J I T | JJJ AT I I (JJJJTIIIT | 2 J U JTITTTTTT
2lal x| T - T - I - I =1 T 4 T] I
=lal o] T I - 4 T T - | = = - - T T
oy, M WM) oS g R | - I T T T - - - - = T I =
@
. o
i B N S A - - - - T T b= T T T T T !
e
o
[a}
L]
© L4
~ =
e o~ = 3]
S = = = = »M_ o
B - o~ o < ©)]) @ e - T
e - [- - = = - = ™ &~ - 1
= =] & & F & & = & s F L T
Bl © - =] o~ =] — o L] =] - [=] o =] — . .
3 = | - = = = = = = = = = - = - g z
e | s = - - - - - - - = = - - - S
of 8 & & & & @ & k4 L1 g & £ & & E]
Z | F = = = = = = [~ = I [[~ [= it |
4

Figure 19. Function Table.

30

A 16 input condition code multiplexer function is provided by
using two Am2922s as U7 and U8. These devices allow one of
sixteen inputs to be tested and the polarity of the test can also be
determined. The pipeline register consists of U9, U10, U11, U12
and U13. These devices are edge triggered D type registers and
have been selected to provide unique functions as required de-
pending on their bit positions in the pipeline register. An
Am745175 was selected for U9 because both a true and com-
plement output were desired to provide control to the condition
code multiplexer three state enables. An Am745174 register was
selected as U10 because it provides a clear input for initializing
the Am2910 microprogram sequencer. Three Am2918s were
selected for U11, U12 and U13 because they have a three state
output that can be used to provide the branch address field to the
D inputs of the Am2910 and they also have a set of outputs that
can be used to provide other control signals via this field when it
does not contain a branch address. No specific devices are
shown for the microprogram memory as the user should select
the desired width and depth depending on his design.

ANOTHER DESIGN EXAMPLE

The Am2909, Am2910, Am2911, Am29811A and Am29803A
have been designed to operate in the microprogram sequencing
section of any digital state machine. Typically, the examples
shown are for performing the computer control unit function of a
typical minicomputer class machine. The design engineer should
not limit his thinking for the use of these devices simply to that of
microprogram sequencing in a computer control unit. These de-
vices can be successfully used in other areas of designing such
as memory control, DMA control, interrupt control and special
purpose microprogrammed machine architectures. In order to
provide an example of a design using these devices in something
other than a typical computer control unit, a microprogrammed
CRT controller is described in the following.

In order to provide some basis for the design of a CRT controller,
the requirements of this controller must be spelled out. These are
given as follows:

A) Character size: 5 x 7 dot matrix. The character field will be 7
dots by 10 horizontal lines thereby providing ample space for
the 5 x 7 character and the intervening space between
characters and lines of characters.

80 characters per line. A standard 80 character per line dis-
play will be utilized and there will be 18 character periods
allowed for horizontal retrace time.

24 lines of characters per frame. This provides a total of 240
visible lines per frame (24 lines of characters by 10 horizontal
lines per character). There are a total of 24 lines provided for
vertical retrace bringing the total number of lines per frame to
264.

Refresh rate: 60 frames per second. Therefore, the horizon-
tal line rate will be 264 x 60 = 15,840Hz. As there are a total of
80 + 18 = 98 character periods in a line, the character rate
will be 98 x 15.84 = 1,552.32KHz, and the dot rate will be 7 x
1.5288 = 10.86624MHz. (Note: No interlace is used.)

It is assumed that there is a 2K word deep x 8-bit wide
character RAM available to the host computer in which it can
write the ASCIl equivalent of the characters to be displayed. If
scrolling is to be used, the host computer must also write the
first visible character's address divided by 164 into the
Am25LS374 “First Address Register”.

This CRT controller must generate an 11-bit character ad-
dress thatis used by the 2K word deep character RAM. It must
also generate the required video enable signals and the hori-
zontal and vertical blanking signals.

B

e

D

—

E

J

31

Principle of Operation

A detailed block diagram of the CRT controller is shown in Figure
21. The block diagram shows an interface to an SBC-80/10 data
bus, address bus and control bus. The outputs of the CRT control-
ler are connected to a CRT monitor on the block diagram. Other-
wise the block diagram shows a straightforward use of the
Am2910 and three Am2911s to implement the CRT control func-
tion using microprogrammed techniques. The SBC-80/10 was
selected for this example since it is well known.

Alogic diagram of the CRT controller is shown in Figure 22. Three
Am29775 512-word x 8-bit registered PROMSs are used to contain
the 23-bit wide microprogram. While only a minimum number of
words are used in the design as shown, many additional words
can be used to add various options (as described later). The
address for these Am29775 registered PROMSs is provided by an
Am2910 microprogram sequencer. Three Am2911 sequencers
are used to generate the character address for the character
RAM. The least significant Am2911 sequencer is connected as a
divide by 16 counter. This RAM address is compared with the
desired last character address (80 x 24 = 1920) value using an
Am25L52521 8-bit equal to detector. When the last address is
detected, it can be sensed at the condition code multiplexer
(Am25L5153) that is used to select the condition code for the
Am2910 sequencer.

The data derived from the 2K word character RAM is decoded by
a character generator (8061) in this design and the character
output is parallel loaded into an Am25LS23 shift register. This
shift register is used to provide the video signal from its Qg output
to eventually drive the display via an Am74S5240 buffer. The
diagram of Figure 22 depicts an oscillator input source to supply
the dot frequency. In this design, a 10.86624MHz oscillator
should be connected to this oscillator input point. This oscillator
input signal is used to clock the shift register containing the
individual dot bits (dot-on or dot-off) and also drives an
Am25LS169 counter which divides this frequency by 7 to gener-
ate the character rate clock. This character rate clock is used
throughout the controller to provide a timing signal for the state
machine design.

An Am25LS168 decade counter is used to generate the line
inputs for the character generator and to count 10 horizontal lines
per character space. This counter is clocked by the horizontal
blanking signal (HB) and its RCO output is used as one of the
condition code multiplexer inputs. The RCO output can be tested
to determine when 10 counts have been executed by the counter
and it is also used to enable the last address comparator during
the 10th horizontal line time.

When the host computer accesses the character RAM, the
HOST-ACCESS line is pulled LOW. This removes the Am2911
outputs from the character RAM address bus. When this access
occurs, improper data may be present at the shift register inputs.
Thus, the character generator PROM output is disabled by the
HOST-ACCESS signal during this time.

When power is applied to this CRT controller or whenever it is
reset, the RESET line is driven LOW. This signal is inverted
through an Am25L5240 and then disables a part of the pipeline
register outputs as well as enabling one half of an Am25L5241.
This Am25L5241 inserts LOWSs onto the instruction (1) inputs of
the Am2910 sequencer. Then, the next character rate clock will
force the microprogram address outputs to zero and the micro-
program for the CRT controller as shown in Figure 23 will be
executed starting at address zero.

HORIZONTAL o ¥
& VERTICAL [+ VECT OE F L
CAT BLANKING CONDITION CODE seieci OF FIRST ADDR
MONITOR BE Mux | SELE
Amavin SBC 8010
I ‘ e DATA BUS
VIDEQ |
CHARACTER v
RATE CLOCK L|gz e
BUFFER
DOT RATE MAP
CLOCK IN SWITCHES
o CP SHIFT REG. (Fig. €1)
= MAP SWITCHES }
CH + 816 S FE D
TEAD
CHARACTER DECODE L_ LAST ADDA. =
PROM ot FCO[—*=1 compapaton o[3-Am2911
£ \r. o
¥
CHARACTER
CHARACTER
DATA BUS AODRESS
2K by 8-BIT BUS
o A
RAM N
we \}
¥
<7 | OF HLZ BUFFER
sis SBC 8010
HI-Z BUFFER OF f? ADDR. BUS
DECODE < >
SBC 80/10 SBC 80110
DATA BUS ﬁ CONTROL BUS
MPR-489

Figure 21. CRT Controller Block Diagram.

The Microprogram for the CRT Controller

Table 6 shows a complete description of the microprogrammed
CRT controller microcode. Execution of these microinstructions
is controlled by the Am2910 sequencer.

As can be seen in Table 6, several techniques were used in this
short microprogram to provide the different counting require-
ments of this CRT controller. Although only one format (80
characters per line, 24 lines per frame) was shown here, the
designer can easily configure his own format by simply changing
some constants in the microprogram. As an exercise, the reader
is encouraged to find a means to program the CRT controller for
different formats. The host computer software could configure the
controller format by using an additional register similar to the
“First Address Register”. This will be discussed in an appendix at
the end of this chapter.

A complete wiring diagram for the microprogrammed CRT con-
troller is shown in Figure 24. This can be used directly with the
interface shown in Appendix A such that the CRT controller can

Note: Figure 24 is at back of the book.

32

be connected directly to an Am9080A based microprocessor
system. Appendix A also depicts the use of a 2K word x 8 bit
character RAM as described previously.

CRT Controller Timing Considerations

As was discussed earlier, the character clock frequency for the
CRT controller is 1,552.32KHz. Thus, it is desirable to calculate
the longest path of the design to ensure that none exceed this
clock period of 644.1ns. The timing diagrams of Figure 25 depict
a number of different paths with the associated propagation delay
calculations.

When all of the timing diagrams of Figure 25 are examined, it will
be found that only three show propagation delay times of over
200ns typical. Of these, the worst case is 318ns as shown in
Figure 25(i). Since the requirement of the design is to insure that
none exceed 644.1ns, we have more than a 2 to 1 margin in the
design based on the typicals. Thus, we can see that the design
will operate properly even over the full military temperature range
and power supply variations based on this analysis.

“19]1043u09 LHO 22 @4nbig

§
o«
o
=
i3 T
-3 ig
T4 i
Iy %
ER
. iy B o
sna 2 al— 2
ss3uaaY L SR il g
HATIOHINDD
[L Bl
O ELILY
[T A 30 % e L 9 .Jl_ ;
> il P =
) Tl = L] ur
T OPESTISEWY gy
og -] vy O zy b
wezwy Lz v O Py ‘v
: ot o3OIA ._|
L ELS L]
ousz dnd dnd ‘s
31— 9
T 1-ag =
* 8 6 2 T
< NS, ML 85100 diE
s aH 40 o FECET
g SISz 2952wy
¥ aou an AN e
AS+ an = a3t a
7 I @
¥ » o % Yo 9%
_ _ AT Wi _
i-0g 9y Sg bg fg %@ ‘g i-rg tig 9%
.
SLIEZWY SLIEZWY sLigzuy
a0 =
EL] ¥ a0 ¥ o Gy ly g ‘3 = T
e , — - v v v 3 an
y unil| Pl . 2
s r-0g s '3 5
§ BTy e g g
Hs
snd YAVD
6 v 5974 HITIOHLNOD
2575wV 5 '53H
3 b) AGH
EATIRE Cog 1%
| =
N2 #
oo to il a1
3w av TELETSZWY
olezwY T
I
A AL As+ A5+
PIEGISZWY
TG 5 =
S53HAAY L5HI.. L
A 0oy ain [~
_ == BOLSELAY =
_ 2 a1 42 0)
¥ M m_ a rl_mw|._||E NI 250
AS+ Ay =
AS+
B | " oy - / - Y

[y
@

Am2910 Am2911
ADDR
(Hex) | Label I CCEN|MUX|5, 54 FE ZEROH ZEROL Ch|HB VB| NUM Comments
0 INIT Cav L 3 HHL H L LIH L X ILoad first address from Register to 2911°s file
1 LDCT X X =ELZLEH H L LI H 2319 | ;Load 2910's counter with member of rows/frame — 1
2 MAIN CONT X|H L H H L HiH L X Address supplied by 2911's file
3 cJP L 1L L H H H HiL L %
4 P L ! L.t o H H HiL L $:One row: 5 x 16 = 80 characters
5 CcJP L 1 L L H H H HiL L)
6 CJP L 1 L L H H H HIL L 3
7 CcJP L 1 L L H H H H|IL L 3
8 CJs L 0 |L L H H H HIH L [TENTH | ;if tenth (last) line of a row: jump to “TENTH" subroutine
9 CJs L 28 L e H H H{H L | LASTA | :If last character: jump to "LASTA" subroutine
A CJP L 1 |L:L H H H HIH L 3 iWait, until horizontal invisible counts done
B CJpP H XL L H H X X|H L| MAIN | Then do the Main routing again
C | TENTH |[RPCT X X L L L H H H|H L |GOBACK| ;Push next addr on 2911's file: jump to "GOBACK" if not
End of Frame
D Cuv L 3 |HH L H L X Load 2911's file from First Address Register
E LDCT X ¥ {L L H H X X|H H| 14645 | Load 2910's counter with number of invisible characters
during Vert retrace divided by 16, minus 1
F PUSH L 3 |L L H H H HiH H X iPush next PC to 2910's file for double
10 cJP L 1 L L H H H H{H H 5 Wait for LS2911 to count 16
11 RFCT X X |L L H H H H|{H H X :Decrement 2910's counter and jump one line back if = 0
12 LDCT X X /L L H H H HIH H 2349 iLoad 2810's counter again with number of rows/frame — 1
13 CRTN H X |L L H H H H|H H X ;Return from subroutine
14 GOBACK |CRTN H XL L H H H HIH L x ;Return
15 LASTA CRTN H X |X X L L H HIH L X Load zero to 2911's file and return.
Figure 23. Microprogram for the CRT Controller.
TABLE 6. DESCRIPTION OF THE MICROPROGRAM FOR THE CRT CONTROLLER.
Micro-
program Low High
Address Order Am2911 Order Am2911s Am2910 Comments
0 Since ZERO is low, its output Both Sy and Sy are HIGH so The CJV instruction is selected. | This instruction pushes the "First
will be LOW. The Cy, input that the D inputs will be routed | Therefore, VECT output will be | Character Address” more signif-
(from the Pipeline Register) to the ¥ outputs. These inputs | LOW, enabling the “First Ad- icant bits onto the Am2911's file,
is LOW so that the micro- will come from the First Address | dress Register onto the internal | and continues to the next micro-
program incrementer will not Register (the Am2910 VECT is | 8-bit bus. CCEN is LOW; the instruction.
increment, LOW). Cy, is LOW (see left MUX is selecting a constant
column); therefore the micro- HIGH, and the sequencer will
program counter will not incre- | address the next consecutive
ment. FE is LOW (and PUP is microprogram address (word 1).
always HIGH) causing the pre-
sent output to be pushed on
the stack. The character ad-
dress is already the "First
Character Address”.
1 ZERQ and C,, are still LOW, S4 and S; are LOW; thus, the | LDCT is selected and the num-
s0 no change in this device. Y outputs will be the current ber of character-rows per frame
PC, (the same as the Y out- minus 1 (234g) is loaded into
puts were in the previous step). | the Am2910 register/counter.
Cp, is still LOW, therefore no The sequencer addresses the
change will occur in the PC. next microinstruction,
2 Maintaining ZERO LOW With §; = HIGH, 55 = LOW The Am2910 will generate the | This is the starting location for
"MAIN" | assures the proper starting and FE = HIGH, the Am2911 next microprogram address. the main loop.
address. Cp, is HIGH; there- will refer to its internal file
fore, the internal PC will (the starting address of this
be incremented. particular character-row)
without popping.

MNote: Figur

© 24 is at back of the book.

34

TABLE 6. DESCRIPTION OF THE MICROPROGRAM FOR THE CRT CONTROLLER (Cont.).

rows were already displayed
and we are at the bottom of the
CRT display. A vertical retrace
pericd is needed and the mi-
croprogram will continue
sequentially. If the counter is
not yel zero, we do not need
o execute the vertical retrace
routine and the next address
will be supplied by the pipe-
register (“GOBACK" =

14,5) while the internal
counter is decremented.

Micro-
program Low High
Address Order Am2911 Order Am2911s Am2910 Comments

3 This Am2911 now counts up Initially these two Am2911s With the MUX selecting the This microstep will be executed
using its PC incrementer. At will not change their ¥ outputs | Cp,4 4 output from the least 16 times. (Note that 80 = 5 x 16.)
the final count (moving from since their C, input is LOW. significant Am2911 slice, the
Fig to 0) its Cp 4 output will However, when the C, input CC input to the Am2910 se-
be HIGH. goes HIGH, the internal PC quencer will be LOW until the

will increment Am2911 counts 16. CC =

LOW will cause the next mi-
croprogram address to be the
pipeline register contents; this
is also the current micropro-
gram address (word 3). When
Cr+4 goes HIGH, CC will go
HIGH and together with CCEN
= LOW, will force the Am2310
to address the next consecu-
tive microprogram address (4).

4 Same as 3. Same as 3. Same as 3, except that at each | The microprogram itself is used

through address, the current micro- as a counter in this applica-

7 program address is written. tion since the count is only 5,
the microprogram is relatively
short versus the memory's depth
and this is a convenient means
to economize on chip count,

8 Continues to count (note that it | Since Cp is LOW (see left The MUX selects the We are now at the end of a TV
enters this line with an output column} no change occurs in Am25LS168 ten-line-counters line. Therefore, the Horizontal
of zero). these devices. Note that the RCO as the condition code in- | Blanking Signal (HB) is HIGH.

Y outputs contain the more put to the Am2310 (CC). If the | The least significant Am2911
significant bits of the address line count is less than 10, CC | slice now counts the invisible
of the first character of the will be HIGH and the next mi- characters during the horizon-
next character row. croinstruction will be addressed. | tal retrace.

If the tenth line of a character

row is executed, CC will be

LOW and a JUMP-TO-SUB-

ROUTINE to an address, sup-

I plied by the pipeline registar

("TENTH") will be executed.

k2] Continues to count through No change. The MUX now selects the Last | Note that 80 characters/row

the internal PC incrementer. Address Comparator output for | and 24 rows/frame requires a
CC. If the current more signif- 192049 word memory. When
icant bits of the character- the last memory location
address coincide with the last (19204) is read out, the scan will
address + 1 (192045/16) a begin at 0.
subroutine call will be per-
formed to “LASTA". Other-
wise, the microprogram will
continue consecutively,

A Continues to count. At count No change until C,, goes Same as at address 3. Waiting for the least significant

15, Cp+4 goes HIGH. HIGH, then count. Am2911 to count to 15. This
microstep will be executed
as many times as necessary
to accomplish this.

B It doesn't matter what this No change. Unconditionally (CCEN = Performing a JUMP to the
device does at this microstep HIGH) steers the micropro- beginning of the main-loop
because at the next micro- gram to the address supplied (address 2).
step it will receive LOW on by the pipeline register
its ZERO input. ("MAIN" = 2).

c Continues to count. No change. If internal counter is equal to The decision whether the bottom

“TENTH” zero, it means that 24 character | of the CRT (End of Frame) is

reached or not is made internally
in the Am2910, using its counter.

35

TABLE 6. DESCRIPTION OF THE MICROPROGRAM FOR THE CRT CONTROLLER (Cont.).

Micro-
program Low High
Address Order Am2911 Order Am2911s Am2910 Comments
D ZERO = LOW, therefore, out- | Same as at address 0. Same as at address 0. As we are at the End of Frame,
put Y = 0. This is necessary the “First-Address-Register”
to assure that Cp, 4 is LOW. contents (enabled by the
Am2910's VECT output) is
pushed onto the Am2911's file.
Note that the Vertical Blanking
Signal (VB) goes HIGH.

E Same as at address B. No change. The internal counter is loaded (1464g + 1) x 169 = 23524
with 14649, supplied by the equals the number of character-
pipeling register. The next periods during vertical retrace.
consecutive microstep is Loading 23524 directly into the
addressed. Am2910's counter would require

| 7 bits. Usingthis scheme we
reduce the microprogram width.

F Counts. No change. With CCEN = LOW and CC = | This is a preparatory step for the
HIGH (supplied from a con- 2 step “Vertical Retrace” double-
stant HIGH by the MUX), the nested loop.
next address (104g) will be
pushed onto the Am2910 file,
the counter will not be af-
fected and the next consecutive
microstep will be addressed.

104 Counts. When final count is No change with C,, = LOW; The MUX supplies the Cr. 4 Again, this is a possible way 10
reached, Cpeyq = HIGH. increments with C, = HIGH. output of the less significant dwell on a certain microstep
This has no practical affect as | Am2911 slice to the Am2910 waiting a condition to change
the HE signal is HIGH, and at CC input. While this signal is its status (like address 3 through
the beginning of the next vis- low, the Am2910 will select 7). This is the internal loop of
ible line, the correct address the pipeline register as the a double-nested loop system.
will be fetched from the file source of the next microin-
(address 2). struction address. The current
address (10y) being written
there, this instruction will be exe-
cuted until CC goes HIGH. Then
the next consecutive instruc-
tion will be selected through
the Am2910 internal PC.
11y Counts. Mo change. If the final count has been This is the external loop of the
reached, the next micro- double-nested loop system,
instruction will be addressed which counts the vertical retrace
and the internal stack will be interval. By adding a single mi-
popped (adjusted). Otherwise, | croinstruction the chip count
the next microinstruction ad- was reduced.
dress will be the one residing
on the top of the stack (which
is 1045).
12y Counts. No change. Same as at address 1. Reinitializes the Am2910 internal
counter with the number of
character rows per frame.
13y Counts. Mo change. Unconditional return from End of “TENTH" subroutine at
subrouting. (CCEN = HIGH). End of Frame (with vertical
retrace).
14y Counts. No change. Uncenditional return from End of “TENTH" subroutine
“GOBACK" subroutine. without vertical retrace.
154 Counts. Pushes zero into file. Unconditional return from A one-line subroutine to raini-
“LASTA" subroutine. tialize character address to zero.

36

b Y

| a)
| DEVICE NO. | DEVICE PATH | PATH1 | PATH2 | PATH3 | PATH 4
: 20775 CPtoD 15 is 15 15 Ta s,l/
1 2911 (A) ChtoChig 9 = = - =
(|)]
2911 (4) ZEAC 16 Cppg - 30 - e
2911 (8) CntoCnig 9 9 = = AmZSLS1S3 ¥ &t VECT oF
2911 (C) Cp ltg) 15 15 - - AmZE10
2911 (8, C) | FE itg) - - 14 - € AB [
2811 (B) Sg. 5110 Chsa - - = 30 I, CCEN y PL
2911 (C) Cp its) - 3 s 15
2 A9
TOTAL-ns 48 69 29 60
i
cLOCK i cn
CNT i
ACH
CcP Q
' 3
Am25L523
REG —
Ag-Ag oE
D o 6061 E, Am25LS2521
5
Az—Ag A
7
a
Ama114
A
1 1
PATH! —— — — —
PATH 2 eLOCK
PATH3 — - — — ——
b \ PATH 4 . . MPR-481
DEVICE NO. | DEVICE PATH | PATH1 |PATH2 | PATH3
29775 CPlo D 15 15 15 'rs 54’
2911 (A) ZERO to ¥ 18 - -) Y
2911 (B,C) | ZEROto ¥ 19 - - _ Am25LS374
2911(B,C) | Sp.SytoY . £ 19 Am25LS1S3 ¥ &t vECT o€
Amz910
9114 AtoD 150 150 150 e i
6061 Ato Out 70 70 70 y _ crock
251523 D10 CP (ig) 23 23 23 LCCEN ¥ PL
TOTAL-ns 277 277 277 2 9
[A
cLOCK siss CP o
i N A FLCK
cP]
' |
OE]
E, Ama5LsS2521 |
T |
L/
= |
; i e i i i
b cLoCK
MPR-482
Figure 25.
' 37

c)

DEVICE NO. DEVICE PATH PATH1 PATH 3 B‘}/
29775 CPtoD 15 - ¥
2910 oY 40 - _ AM2ELSITA
2010 CCEN®© Y B e Am25LE153 Y = 3
2910 CPwoY - 54 c AB b= ciocx
29775 Altg) 40 40 Y !
TOTAL-ns a5 a4
2
Lt OE
CLOCK
AmM2SLE168
CNT i, \ e
RCo 1] TLock
cP]
[
3 8
AM25LS23 K|
REG — -
o~ Az BE &
i naren 6061 E; Am25LS2521
Az-Ag ZERO D
So8y
2 FE
Am2911 Amz911
a © A)
Am114 Cn Cnta ZE?;U =
n
A ¥ ¥
Y 1 l_ I
PATH1 — — — — cLock
PATH 2
PATH3 — - — — —
MPR-483
d)
DEVICE NO. | DEVICE PATH PATH 1 34,
29775 CP1o D 15 Y
2515153 ABtaY 19 _ __AmzsLs:!?.l
2910 cClo Y 21 Am2SLEIES ¥ cc
I e AM2BTD
29775 Altg) 40 c a8 \
TOTAL-ns g5 I I, CCEN \ PL
| —
——-A‘_ OE
CLOCK —
cp AM29775 —
AMZ5LE168 ——
RCO [CLOCK
cP [}
3 | 3
Am25L523
REG -~ e
Ag-Agz 8
o ; o 6061 E, AmzsLS2521
Az—Ag A ZERO D
Sg54
: FE
Amza11 Am2911
a <) (A)
ZERO
c —
Amo11a Cn n+a p
A ¥ Y
T " I !
CLOCK
PATH{ — — — —
MPR-484

Figure 25. (Cont.)
38

et

e)

DEVICE NO. | DEVICE PATH | PATH1 | PATH2 ,{/r - ’i,)
29775 CPloD 15 15 D ¥ |
2910 I to PL, VECT 27 27 i Am25L§3T4 |
29775 Ei oD = is5 Am25LS153 Y cc VECT OE J
2515374 OEtoY 14 - [’ e - I
c AB |~ cLock
2910 PC (tg) = 34 c;;
2811 D itg) 17 = 1, el y PL ™\ !
TOTAL-ns 73 a1 2 I 9 |
2, |
CLOCK
AmzsLs16s CF { L Am29775
CNT e A o
cp a co T CTLOCK |
3 I
Am25L523 | A I
REG s
Ag—hg GE J
o Ak 6061 By Am25LS2521
As—Ag a
A7
Am211
a (A)
ZERO
Ama114 ks Gy
A ¥
! " |
cLOCK
PATH1 — == e o
PATH 2
MPR-495
DEVICE NO. | DEVICE PATH | PATH1 | PATH2 | PATH 3
it]]
29775 CPtoD 15 15 15 l{/ ’t/
2911 ZERO to Cpyq - 30 D ¥
2811 Cn10Crsq - 9 a re — v SAmeteas
2515168 CP to RCO 19 - = I i) e e Am;;q; i
2518153 DtoY 20 20 20] |c ae v f—— cLOCK
2910 CCloY 21 1 1 ==
] 2 ! ! 1, CCEN ¥ l"l-
29775 Allg) 40 40 40 | ! '
TOTAL-ns 115 105 126 I I : r H
| g
CLOCK] : Tk S
amzsLsies PF 1 e —
ONT 1 I (}_B—""“'mx
cP a B
2 B e e e S
— = T =
Am25L523 | H 1 _1
REG R —— I :
oAz (13 8 B |]
o —1° 8061 E; Am25LS2521 : !
Az-Ag A ZERD D ZERO D t I
s.,_s. 5054 . .
1. FE FE I J
Amza11 Amzg11 H Am2911
Q ic) (8) L w__| 3
- —rERo—
i Cn Cnsia Cn nid . e
A ¥ ¥ Y
| " [I |
7
PATH 1 CLOCK
PATH 2
PATH3
MPR-496

Figure 25. (Cont.)

39

a)
DEVICE NO. | DEVICE PATH PATH1 PATH2 | PATH 3
|
29775 CPtoD 15 15 =
2811 Sp. SqtoY - 19 - 2 = |
2911 CP1o Y (§1Sg = HL) - - 54 'f /t/
2515168 CP to RCO 19 - - [¥ |
25052521 Alto E - 9 g e [| __Am25LS374 i
0 Am25LS153 Y cC WECT CE
25182521 | Eqto Ep 6 = - o e —— b |
|
2515153 DloY 20 20 20 | r; A B m1 | e |
2910 CCloY 21 21 21 y . |
I, CCEN | y| PL
29775 Atg) 40 40 40 T
H |
TOTAL-ns 121 124 144 | | 2 | 1“
| g { P .
L L e
e amzssies SR ——————— ! — T Rmaeris]
CNT =] | —
@ ’ - { L TLOCK
CP Q -—] I
3 | | :
Am25L523 I i
REG
Ag-Ag l — _f =
Ll neren 5061 \ —| & ~AmasLs:
Az-Ag v
¥ Am2911 1
Q I (a) I
., ZEWO |
Ama114 H " C, |
A | , |
i
" |
i [1 1 |
PATH1 — —— — — &
PATH 2 fi
PATH3 — - —— = — CLOCK MPR-497
h)
DEVICE NO. | DEVICE PATH PATH1 | PATH2 /rs a/|/ |
2911 CP1o Y (815p = HL) 39 - D [I
2811 CP 1o Crya (S = HL) A 54 = _-Im?5LS:3?-1 |
2911 Coit }n L) _ 15 Am25L5153 ¥ cc VECT OE |
n b Am2910 |
9114 At D 150 N c AB l—— cLock
BO&1 Ao OUT 70 - 5 i =
251523 D itg) 23 s 1, CCEN
TOTAL-ns 282 59 z ¢
o A D_E
GLECK PRty) Am2aTTS |
o RCO »] CLOCK 1
cP a] |
) S |
Am25L523]
REG . ..
Ag—hg 0E 8l 8 |
L] =12 6061 E; Am25LS2521 |
Az—hg A ZERO D ZERO D {
SpS1 So81 |
3 FE ,
7 |
1 Am2911 Am2911 Am2911 i
Ol [(+] 8]) |
ZERD
lmgi“ Cn Cria Cp Cnla I !
i
A ¥ [Y |
L { il ! |
1
4 1
!.
CLOCK i
PATH1 — — —— — |
PATH 2

MPR-498

Figure 25. (Cont.)
40 A 4

i)
DEVICE NO. | DEVICE PATH | PATH1 | PATH2 | PATH3
29775 CPeD 15 15 15
2910 10 PL 36 36 36 {s syl{-——-—-—-‘
29775 EqtoD 15 - - v
2505374 OEt Y - 14 14 D [H !
AmIELSITH L
291 Dl g 2 Am25LS153 ¥ cq" VE T
9114 Ao D 150 150 - T —1 : |
6061 AtoD 70 70 - c AB ! i H
25L523 ts (D) 23 23 = o d‘- s ——— ._1 |
2911 ts (D) - = 17 : H
- : i 1 |
TOTAL-ns 318 317 82 | | |
i * IR
CLOCK - -, = 1y 2 —
Am25LS168 CF , Rncly A s —
CNT — A =y
RCO or CLOCK|
CcP Q i |
3 8
AmM25L523 (“"""“““"“"""‘"‘_"I"”‘"‘""-'
REG - e e Ko e]
Ag—Az OF 8 !a' - —
o F—H%o L By Am25LS2521 |
A}-hs A ZERO D —ﬁj
Sp51 SgS4.
L FE
] Am2911 AmaS Amz2911
[+ <y -FILE 1] A)
! [c 7 ¢ Covg ZEROL,]
Anﬂilﬂ " i | o Cp
Ay ¥ { b Y
e s ol . T I
PATH1 — — — —
PATH 2 cLOCK
PATH3 — — —— — — MPR-499
Figure 25. (Cont.)
SUMMARY These Am2900 family microprogram control. devices offer the

The Am2910 provides a powerful solution to the microprogram
memory sequence control problem. The Am2910 is a fixed in-
struction set, 12-bit wide microprogram sequencer. In addition,
the Am2909, Am2911, Am29811A and Am29803A provide
another solution to the microprogram sequencing problem.
These devices are bit slice oriented and provide more potential
flexibility to the microprogram sequencing solution. All of these
devices are particularly well suited for the high performance
computer control unit and structured state machine designs using
overlap fetch of the next microinstruction — also referred to as
instruction-data-based microprogram architecture.

41

highest performance LS| solution to the problem of microprogram
control. They provide a number of conditional-branch source
addresses as well as conditional jump-to-subroutine and
conditional-return instructions. In addition, several technigues for
timed and untimed looping are provided such that loops from one
to several microinstructions can be executed. All of the devices
described in this chapter are competitively priced and currently
available. In addition, all of these devices are available with
specifications guaranteed over the full commercial temperature
range and power supply tolerance as well as the full military
temperature range and power supply tolerance. All of these de-
vices undergo 100% reliability assurance testing in compliance
with MIL-STD-883.

APPENDIX A

Figure A1 shows the logic diagram of an interface circuit used to
connect the microprogrammed CRT controller to any Am9080A
type processor. Sixteen address-lines, eight data lines, a
memory-read, a memory write and an /O write signal are as-
sumed to be used in an active LOW polarity.

An Am25L52521 8-bit comparator is used to decode the addres-
ses of the 2K by 8 character memory. This memory can be placed
anywhere in the memory space in increments of 2K by using 5
DIP-switches. The comparator is enabled by the presence of
either the MMR or the MMW signal. The output of this comparator
is the HOST ACCESS signal.

The HOST ACCESS signal enables the two Am25LS240 buffers
which connect the processor address bus to the character mem-

Note: Figure A2 is at back of the book.

42

ory address bus. It also enables one half of an Am25L.5241 buffer
transferring the MMR or MMR active LOW signal to the proper
data buffer enable (Am25LS240's) and to the WE pins of the four
Am9114 memories in case of a memory write operation. The CS
of two of these memories are driven by A, while the CS of the
other two memories are driven by A4, thus forming a 2K by 8
memory space.

An Am25L.82521 8-bit comparator is enabled by the JOW control
line. If n matches the settings of the DIP switches at the B inputs of
the comparator, an OUT n instruction will write the data into the
Am25LS374 “First Address Register”.

Figure A2 shows the complete wiring diagram of this interface
circuit.

W

"18]|041u0D 1HO "LV anbig

pLESISZWY N 8 .
A v
orZssSIWY
HILSIDIY 42 ; .
$53H0OY LSHId,
a Ve v El
P p i-tg
~ 8 sna viva
40, v 2 okiog
a ¥ 2
sna viva 1 'l A
HITIOHLNDD A
B v
2
Oby 03 .-|_
o am o am . il S PO T
b |zsesTsTWY \O 8 1hZSISTWY =
l.l|\.||\....|ul
0L 3 ot Howx = EAL Pwi
a vi7q e v [~ ‘a Eri ¢ a2
FLIEWY FhLBwy LAl g bt
AS+
ol
3% 5
™
_ .— AS+ I L]
HAN
S0 3m 50 3m L0y
T opZSTISTWY = =
8 =
lhw.r B—fg B8 L\
¥ ok v ot]
~“—|a v _.vb a v =4 A
Uiy o
- wr
pLLBWY PLLGWY 4 = \zsESTISTWY
B T .
T Oly S-lg &
ta
-0y 6Oy 5914 §
‘53
¥
oL} ol
a1 9L, g 8, ik L
S1-0y 7 A Y[Shyy
SN ss3uaoy - SNA S53HOOY OLI0E-D8S
HITIOHINGD ¥ E&m._ﬂm L o
A v
2
$$309¥ LSOH .—,

MPR-500

43

APPENDIX B

General

A software emulation of the CRT controller was written in
BASIC-E and run on the System 29 support processor. Figure B1
is a printout of this program.

Motations

For reference purposes, each clock pulse (CP) in the program is
numbered. The clocks are character-rate clocks. A subscript 10"
signifies that this variable belongs to thee Am2910 (e.g. R10 = the
contents of the Am2910 Register Counter) and similarly a sub-
script 11 signifies the Am2911 dependent variables (e.g. Y11 -
the Y outputs of the two more significant Am2911s).

Usually the normal function names were used though for the
active LOW functions the bar was deleted for simplicity. A 0
signifies always a LOW and 1 signifies HIGH. Other abbrevia-
tions used in the program:

MA = Microprogram Address (Y output of the Am2910)
CA = Character Address
PC = Program Counter (internal)
R = Register (internal)
F = File (internal)
SP = Stack Pointer (internal)
TENC = The Am25LS168 decade counter
L4B = The 4 least significant bits of CA (the Y outputs of
the less significant Am2911
CN = Carry-in into the less significant Am2911
CN4 = Carry-out from the less significant Am2911
CN4 = Carry-in to the next significant Am2911
110 = The Am2910 instruction
HB = Horizontal Blanking signal (active HIGH)
VB = Vertical Blanking signal (active HIGH)
CPM = Maximum Clock Pulse (at which the program

stops)

44

Description

The different groups and subroutines of the emulation program
are as follows: (See Figure B1).

<1000 series: The microcode. Subroutine 50 is the
Am25LS168 decade counter clocking routine.
TENTH is the RCO output of this device.

This is essentially the Am2910 emulation.
Note the definition of the two functions
FNFAIL and FNPASS at the beginning of the
program, compare to the Am2910 instruction
definitions in its data sheet.

The Am25LS153 multiplexer emulation.

The less significant Am2911 emulation. Note
that the only input to this device is ZEROL.
CN and the internal PC (called L4B) are con-
trolled in the CLOCK Subroutine (4000 series).
The two more significant Am2911’s emulation,
Sy and S, are treated as a single number
(ranging from 0 through 3) and denoted by
Si1.

The Clocking routine.

The main emulation routine. It includes the
Am25LS52521 comparator routine and checks
the Clock Pulse against CPM to determine
end of run.

Emulation parameter setup (initialization).
The starting and ending CP numbers, MA,
TENC, R10 and VECTOR (The “First Address
Register”) can be set.

Sets up the print-out parameters

Printout subroutine

Sets the program mode: RUN, PRINT or QUIT
(return to CP/M)

1000 series:

2000 series:
2500 series:

3000 series:

4000 series:
5000 series:

5500 series:

6000 series:
7000 series:
9000 series:

The emulation was exercised to evaluate fifteen different perfor-
mance aspects of the CRT Controller. The results indicated that
in all cases, the design operated as desired.

C

T

REM
REV=12
PRINT REV
F000 REM HEADER
FPRINT
FRINT
FRINT " ®EReNRNNENERRERN RN ERERNRRR RN RA R AR R R RR RN N RN NN RNRRNRR
FPRINT
FRINT
FRINT * A MICROPROGRAMMED CRT CONTROLLER EMULATION®
FPRINT
FRINT
FPRINT " %%¥%EM%HXRARNERNENE RN NN MM 632299696 9% W MNWN "
FRINT
FRINT
FRINT * BY MOSHE M. SHAVIT®
FRINT * ADVANCED MICRO DEVICES®
FRINT *® FEERUARY 27, 1978"
FRINT
FRINT
REM
OIM F10(6)
LEF FNFAIL=CCEN=0 AND CC=1
DEF FNFASS=CCEN=1 OR CC=0
REM
REM
REM GOTO 4000 REM FROGRAM PARAMETERS (REMOVED REV &)
REM
REM “<—-—REV &
REM
2100 FRINT
FRINT
FRINT
INFPUT "R-UN, P-RINT OR Q-UIT "3;MODES
IF LEN(MODES$)>=0 THEN GOTO 9100
MODE=ASC(MODES)-79
IF MODE<1 OR MODE > 3 \
THEN FRINT MODES$; * IS INVALID®":\
GOTO 2100
ON MODE GOTO 9110,92120,9130
REM
120 RETURN
REM
2130 REM RUN
FRINT
INFUT "PUT RESULTS ON FILE (0 IF DIRECT FRINTOUT)= ";WFILES
FRINT "CP= ";CP;"MA= ";MA;"VECTDOR= ";VECTUR;\
"CPM= "3;CPM;"ROW= *";24-R10
INFUT "INITIALIZE (Y OR N; CP,MA=0 IF N)";5%
IF Ss="Y" \
THEN GOSUR 5300 \ REM INIT.
ELSE CF=0 : MA=0
IF WFILES="0" X\
THEN GOTO 4010 N REM DIRECT PRINTOUT
REM ELSE FILE WFILES : GOTO 5000 REM MAIN
110 REM FRINT
FRINT
INFUT "GET RESULTS FROM FILE="3;RFILES
FILE RFILES
" REM
AH000 REM FRINT PARAMETERS
FPRINT
4010 PRINT "OUTPUT FORMATS:"

Figure B1.
45

REM
6020

REM
6030

6032

6034

6036

REM
4090

REM
4900

PRINT A=CF AND CA ONLY"

FRINT * B=CP,CA,HE,VE,MA"
FRINT * c=CF,CA,MA, TENC,R10"
FRINT * D=ALL"

FRINT

INFUT *"FORMAT=";FORMATS
IF LEN(FORMATS)=0 THEN GOTO 4010
IF ASC(FORMATS)<65 OR ASC(FORMATS)>68 N\
THEN PRINT FORMATS:;" IS ILLEGAL™ =\
GOTO 6010
PRINT

REM

IF UFILES NE "0" \

THEN CONTROLS="A" =\
GOTO 4030

PRINT "CLOCK CONTROL®"

FRINT * A=CONTINOUS®

PRINT " E=STEP"

INFUT "CONTROL="3;CONTROLS

IF LEN(CONTROL$)=0 THEN GOTO 4020

IF ASC(CONTROLS)<65 OR ASC(CONTROLS$)X>66 N\
THEN FRINT CONTROL$;" IS ILLEGAL" =\

GOTO 6020
PRINT

PRINT "OUTPUT CONTROL®

PRINT A=AT EACH CF"

FRINT * BE=AT EVERY N-TH CP*"

FPRINT * C=MANUAL CONTROL*®

FRINT * 0=5TARTING AT CFS AT EVERY CF*

FRINT * E=8TARTING AT CFPS AT EVERY N-TH CF®
INFUT "OUTPUT=";0UTPUTS
IF LEN(OUTPUT$)=0 THEN GDTD 4030

~ IF ASC(OUTPUTS)<465 OR ASCC(OUTFUTS) =69 N\

THEN FRINT OUTFUT%;" IS ILLEGAL® =\
GOTO 4030

0.CTL=ASC(OUTPUTS) ~64
ON 0.CTL GOTO 6090,6032,6090,6034,6036
INPUT *N="3;N

M=0

GOTO 4090

INFUT *CFS= *;CFS
GOTO 4090

INPUT *CFS= *;CFS
INFUT *N= *;N

M=0

GOTO 4090

FORMAT = ASC(FORMATS)-64
ON FORMAT GOSUR 6190,6300,6200,6100

IF WFILEs$="0" THEN GOTO 5000 REM MAIN
PRINT

IF END #1 THEN 6910

FOR I=1 TO 2 STEF © REM IO UNTIL END OF FILE

READ #1; CF,R10,F1,S5F10,FC10,CA,MUX,CC,CCEN,MA, TENC,\
CN4,F11,HB,VR

F10(SF10)=F1

GOSUE 7000 REM PRINT

GOSUR 5200 REM ESCAPE (REV 7)

IF S=155 THEN PRINT:PRINT *AHORTED AT ®";CP : GOTO 6910

NEXT I

Figure B1 (Cont.)
46

REM
46910 CLOSE 1

ouT 100,12 REM FRINTER FAGE EJECT (REV 7)
GOTO 2100

REM

;4100 FRINT

PRINT "CP","R10","F10","SF10",*FC10"
FRINT "CA*,"MUX",*CC","CCEN", "MA"
FRINT "TENC","CN4®,"F11","HE","VB"
FRINT

6190 RETURN

REM

46200 FRINT
FRINT *"CLOCK®,"CHAR.ADDR®,"2910 REG.","LINE CNTR.®,*NEXT MA®
RETURN

REM

&300 FRINT
FRINT "CLOCK®","CHAR.ADDR", "H.BELANKING", "V.BLANKING","MEXT MA"

RETURN
REM
REM
7000 REM FRINT SUBROUTINE
ON 0.CTL GOTO 7010,7005,7002,7003,7004
REM

7002 INPUT "OUTPUT (Y OR N)";8%
IF S§s="Y" \

THEN GOTO 7010 \
ELSE RETURN
REM
7003 IF CP<CPS THEN RETURN ELSE GOTO 7010
REM
7004 IF CP<CFS THEN RETURN ELSE GOTO 7005
REM
7005 M=M+1
IF M=N THEN M=0 : GOTO 7010 ELSE RETURN
REM
7010 ON FORMAT GOTO 7100,7200,7300,7400
REM™
7100 PRINT *CP= *;CF,"CA= *;CA
RETURN
REM
7200 IF HE=0 THEN HES$='l." ELSE HEs$=" H*
IF VE=0 THEN VE$='L"® ELSE VBE&=" H*
FRINT CF,CA,HES,VES, MA
RETURN
REM

7300 FRINT
FRINT CP,CA,R10,TENC,MA
RETURN
REM
7400 PRINT
FRINT CP,R10,F10(SF10),5F10,FC10
PRINT CA,MUX,CC,CCEN,MA
FRINT TENC,CN4,F11,HB,VE

RETURN
REM
REM
5000 REM MAIN ROUTINE
REM
GOSUE 4000 REM CLOCK
REM FETCH MICROCODE
ON MA+1 GOSUE 30,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
GOSUB 2500 REM 2911L
GOSUE 3000 REM 2911H

Figure B1 (Cont.)
47

CA=Y11%14+L4E REM CHARACTER ADDRESS
REM COMFARATOR NEXT
IF Y11=120 AND TENTH=0 \ REM REV &
THEN COMF=0 \
ELSE COMP=1

GOSUE 2000 REM MUX
GOSUB 1000 REM 2910
REM REV &

IF WFILE$="0" THEN GOSUE 7000 \ REM DIRECT FRINTOUT
ELSE FRINT #1;CP,R10,F10(SP10),5F10,FCL10,CA,MUX,\
CC,CCEN, MA, TENC,CN4,F11,HE, VR

IF CONTROLS$="B" THEN INFUT 5% REM SINGLE STEF
REM CHECK END OF RUN
GOSUER 5200 REM ESCAFE (REV 7)
IF 8=155 THEN PRINT:FRINT *ABORTED AT *;CP : GOTO 5100
IF CP<CPM THEN GOTOD 5000 REM REFEAT MAIN
REM
5100 IF WFILES NE "0" THEN CLOSE (1)
ouT 100,12 REM FPRINTER PAGE EJECT (REV 7)
GOTO 9100
REM
REM 5200 SUE REV 7
5200 REM ESCAPE SUBROUTINE
S=INF(97)
S=INT(5/2)
8=8/2-INT(5/2)
IF 8 NE O THEN 8 = INF(96)
RETURN
REM
5500 REM INITIALIZATION
FRINT
SP10=1

FRINT "MA= ";MA
5505 INFUT "NEW MA (Y OR N)";8%

IF S%$="N" THEN GOTO 5510

INPUT "MA=(0<=MA<22) *;MA

MA=INT (MA)

IF MA<0 OR MA»21 N\

THEN PRINT MA;" IS ILLEGAL" 2\
(GOTO 5505

IF MA=0 THEN TENC=0 : HE=1 : TENTH=1
REM
5510 PRINT

FRINT "VECTOR= *®;VECTOR
5915 INPUT "NEW VECTOR (Y OR N)";8¢

IF S$="N" THEN GOTO 35520

INFUT *VECTOR=(0<=VECTOR<120)"3;VECTOR

VECTOR=INT{VECTOR)

IF VECTOR<0 OR VECTOR>11%9 \

THEN PRINT VECTOR;" IS ILLEGAL" =2\
GOTO 5515

REM
5520 FPRINT

FPRINT "CFP= *";CP

INPUT "NEW CP (Y DR N) ";Ss

IF S$="N" THEN GOTO 5530
5525 INFUT "CP(==0)= ";CF

CP=INT(CF)

IF CP<0 THEN PRINT CP;" IS ILLEGAL" = GOTO 35325
REM
5530 FPRINT

FRINT "CPM= ";CFHM
5535 INPUT "NEW CPM (Y OR N)";5%

IF 8$="N" THEN GOTO 53540

Figure B1. (Cont.)

48

REM

b 5540

REM
5960

REM
REM
REM
30

L ——

REM

2

REM

REM

INPUT *CPM=(CP+1<CPM)";CPM
CFM=INT(CPM)
IF CPM<CF+1 THEN FPRINT CPM;" IS ILLEGAL";"CP= ";CF :GOTO 5535

FRINT

FRINT ®"TENC= *;TENC

IF MA=0 THEN GOTO 5550

INFUT "NEW TENC (Y OR N)*j;S%

IF §$="N" THEN GOTO 5550

INFUT *TENC=(0«<=TENC<10)*;TENC

TENC=INT(TENC)

IF TENC<0 OR TENC>9 N\

THEN FRINT TENC;* IS ILLEGAL™® =\

GOTO 5545

IF TENC=9 THEN TENTH=0 ELSE TENTH=1

PRINT

FRINT "R10= ";R10

INFUT "NEW R10 (Y OR N)";S8%

IF S$="N" THEN GOTO 5540

INPUT "R10 (Q<=R10<25)=";R10

R10=INT(R10)

IF R10<0 OR R103x24 THEN PRINT R10;* IS ILLEGAL" : GOTO 5555

REM
RETURN

I10=6
CCEN=0
MUX=3
H11=3
FE=0
ZEROH=1
ZEROL=0
CN=0
HE=1 REM REV 2
VE=0
FL=0
RETURN

I110=12

S11=0

FE=1

ZEROH=1

ZEROL=0

CN=0

HE=1 REM REV 2
VEB=0

PL=23

RETURN

I110=14

S11=2

FE=1

ZEROH=1

ZEROL=0

CN=1

HBE=1 REM REV 2
VE=0

RETURN

I110=3
Figure B1 (Cont.)

49

REM

REM

REM

REM

CCEN=0 REM
MUX=1 9
§11=0

FE=1

ZEROH=1

ZEROL=1

CN=1

HE=0

VEB=0

FL=3

KRETURN

110=3
CCEN=0 REM
MUX=1 10
811=0

FE=1

ZEROH=1

ZEROL=1

CN=1

HE=0

VE=0

FL=4

RETURN

110=3
CCEN=0 ff”
MUX=1

511=0

FE=1 N

ZEROH=1

ZEROL=1

CN=1,

HE=0

VE=0

PL=S

RETURN

110=3
CCEN=0 i
MUX=1

§11=0

FE=1

ZEROH=1

ZEROL=1

CN=1

HE=0

UB=0

PL=6 REM
RETURN 13

110=3
CCEN=0

MUX=1

$11=0

FE=1

ZEROH=1

ZEROL=1

CN=1

HE=0 REN
VB=0 14
FL=7

RETURN

Figure B1 (Cont.)
50

110=1
CCEN=0

MUX=0

§11=0 -
FE=1 W
ZEROH=1 |
ZEROL=1 '
CN=1

GOSUE S0 REM TENC
VE=0

FL=12

RETURN

110=1
CCEN=0
MUX=2
§11=0
FE=1
ZEROH=1
ZEROL=1
CN=1,
GOSUE 50
VB=0
FL=21
RETURN

110=3
CCEN=0
MUX=1
S11=0
FE=1
ZEROH=1 _
ZEROL=1 A&
CN=1

GOSUR 50

UE=0

FL=10

RETURN

110=3
CCEN=1
511=0
FE=1
ZEROH=1
GOBUR 50
VE=0
FL=2
RETURN

I110=9

S11=0

FE=0 REM REV §
ZEROH=1

ZEROL=1

CN=1

GOSUE 30

VEB=0

FL=20

RETURN

I10=6 u

CCEN=0
MUX=3
811=3

REM
15

REM

REM
14

REM
17

REM
18

REM
19

REM
20

FE=0 REM
ZEROH=1
ZEROL=0
GOSUER 50
VE=1

RETURN

REV 10

110=12
811=0 REM
FE=1 REM
ZEROH=1
ZEROH=1 REM
GOSUB S50

VB=1

PL=11%

RETURN

REV 10
REV 10

I110=4
CCEN=0
MUX=3
S11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUB 350
VB=1
RETURN

I10=3
CCEN=0
MUX=1
S11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUE 50
VEB=1
FL=16
RETURN

I10=8
§11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUE 50
VEB=1
RETURN

I10=12
511=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOsSUR 50
VB=1
FL=23
RETURN

I10=10

REMOVED REV 10

Figure B1 (Cont.)
51

REM

21

REM
i)

i

REM
S0

REM
1000

REM
1100

REM
1110

REM
1120

REM
1130

CCEN=1
511=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOsSUe S50
VB=1
RETURN

I110=10
CCEN=1
811=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUR S0
VEB=0
RETURN

I10=10

CCEN=1

FE=0 REM REV @
ZEROH=0

ZEROL=1 REM REV 9
CN=1

GOSUE 50

VE=0

RETURN

REM TEN-LINE-COUNTER CLOCKING SUBROUTINE
IF HB=1 THEN RETURN

HE=1

TENC=TENC+1

IF TENC=% THEN TENTH=0 ELSE TENTH=1

IF TENC=10 THEN TENC=0

RETURN
FUSH AND POF SUBROUTINES REMOVED REV 3
REM 2910 INSTRUCTIONS SUBROUTINE

ON I10+1 GOTO 1100,1110,1120,1130,1140,1150,1160,1170,1180, \

1190,1200,1210,1220,1230,1240, 1250

REM JZ

MA=0 REM 2910 Y

SP10=0 REM 2910 STACK FOINTER (=0 REV 3)
RETURN

REM cJs

IF FNFAIL \

THEN MA=FC10 \
ELSE MA=PL =\

FUSH=1 REM REV 3

RETURN
REM JMAF
FRINT "JMAFP NOT FPROGRAMMED®
RETURN
REM CJF
IF FNFAIL N\

THEN MA=PC10 \

ELSE MA=FL
RETURN

Figure B1 (Cont.)
52

REM
1140

REM
1150

REM
1160

REM
1170

REM
1180

REM
1190

REM
1200

REM
1210

REM
1220

REM
1230

b REM

1240

REM PUSH
IF FNPASS THEN R10=PL REM LOAD COUNTER
MA=FC10
FUSH=1 REM REV 3
RETURN
REM JSRF
FRINT "JSRP NOT PROGRAMMED*
RETURN
REM cJv
IF FNFAIL \
THEN MA=PC10 \
ELSE MA=VECTOR
RETURN
REM JRP
IF FNFAIL \
THEN MA=R10 \
ELSE MA=FL
RETURN
REM RFCT
IF R10=0 \
THEN MA=FC10 =\
POF=1 \
ELSE MA=F10(SP10) =\
R10=R10-1
RETURN
REM RPCT
IF R10=0 \
THEN MA=PC10 \
ELSE MA=FL 2\
R10=R10-1
RETURN
REM CRTN
IF FNFAIL N\
THEN MA=PC10 \
ELSE MA=F10(5F10) =\
FOF=1 REM REV 3
RETURN
REM CJPP
PRINT *CJPF NOT PROGRAMMED®
RETURN
REM LDCT
R10=PL
MA=PC10
RETURN
REM LOooP
IF FNFAIL N\
THEN MA=F10(SP10) N
ELSE MA=FC10 =\
FOP=1 REM REV 3
RETURN
REM CONT
MA=FC10
RETURN Figure B1. (Cont.)

53

REM

1250 REM TUB
PRINT "TWB NOT PROGRAMMED®
RETURN

REM

REM

2000 REM MUX SUBROUTINE

ON MUX+1 GOTO 2100,2200,2300,2400
REM
2100 IF TENTH=0 \
THEN CC=0 \
ELSE CC=1
RETURN
REM
2200 IF CN4=0 \
THEN CC=0 N\
ELSE CC=1
RETURN
REM
2300 IF COMP=0 \
THEN CC=0 \
ELSE CC=1

RETURN
REM
2400 CC=1
RETURN
REM
REM
2500 REM LEAST SIGNIFICANT 2911 (2911L) SUBROUTINE
IF ZEROL=0 THEN L4E=0
RETURN
REM
REM
REM
REM
3000 REM MORE SIGNIFICANT 29118 (2911H) SUBROUTINE
ON S11i+1 GOSUR 3100,3200,3300,3400
IF ZEROH=0 THEN Y11=0
RETURN
REM
3100 Yii=FC11
RETURN
REM
3200 Y1i=R11
RETURN
REM
3300 Yii=F11
RETURN
REM

3400 IF I10=6 \
THEN Y11=VECTOR \
ELSE Yil=FL

RETURN
REM
REM
4000 REM CLOCK SUEBROUTINE
REM FC10=MA+1 REMOVED REV 4
IF CN=1 THEN L4E=L4B+1
IF L4E>15 THEN L4B=0 : CN4=1 ELSE CN4=0
IF CNa=1 \
THEN FCO11i=Y11+1 \
ELSE FC11=Y11
IF FE=0 THEN F11=PC1l1
REM <~-REV 3

Figure B1 (Cont.)
54

. IF FUSH=1 \

THEN SP10=8FP10+1 =\
F10(8F10)>=PC10 2\

FUSH=0
IF SF10>4 N\ 3
THEN PRINT "2910 STACK FULL * =\
BF10=3
IF POP=1 \
THEN SP10=8F10-1 :\
POF=0
IF SP10<0 \
THEN PRINT "POP EMPTY FILE? ";CP =\
5F10=0
REM REV 3 ==>
PC1O=MA+1 REM REV 4
CFP=CP+1
RETURN
REM
REM

Figure B1 (Cont.)

@ :

APPENDIX C

A simple circuit was designed to accommodate five different
display formats and also to comply with the European 50Hz TV
standard. Figure C1 is the circuit diagram of this additional circuit.

The following parameters change when the format is changed:

1) The number of characters/line.

2) The number of lines/frame.

3) The number of characters to display (i.e., the address of the
last character).

4) The line frequency and therefore the dot frequency.

The number of characters/line is counted by the least significant
Am2911 sequencer via the microcode. Therefore, the microcode
can be changed to change the number of characters/line. The
number of lines/frame is counted by a constant, loaded into the

Am2910 internal counter by the microcode. The microcode can
be changed to vary the number of lines/frame.

The scan is reinitialized to zero when the last address +1 is
attained. Ug (Am25L52521) detects this address by comparing
bits A4 through A4 of the character address bus to a constant
supplied to its B inputs. A table listing these constants is shown in
Figure C1. By setting the DIP switches according to that table, the
character scan will reinitialize correctly. The same constant is
routed through one half of an Am25L5240 (U24) to the internal
data bus. At microprogram address zero, a JUMP MAP instruc-
tion enables these outputs thereby putting a starting address on
the bus according to the table in Figure C1.

The microprogram is shown on Figure C2,

+5V +5V
6
CONNECT
FOR 50 Hz . 1Cy 1€y 1C3 1C3
vt -——— 0O B 6
U4t
Amzaih 14, amsisiss oy |16
WEP Dg 1w GRD
7 |7 8
21
+5V =
E b3 1
T 7 9 TS
oo So 21 1a, 1, L) Mg
O/CS: 4 1hs Wy 16 MD:
0/052 6 1A v 14 MDy g
oo 1ia, v, |2 MDy o .
< U0 +5V AAA- M0s 12
ANA Mo 13
uz4 R MDg
1/2 Am25L5240 Wi o, "
AAA- 15
131&14129171.53 _l_
FEE -
U9
Am25LS2521
MPR-501
LAST COMPARE AT MAP
FORMAT CHAR. ADD. +1 | LAST ADD/16 | S; 52 S, S; | ADDRESS DOT FREQ. (MHz)
24 x 80 1920 120D 78H |H HHH 0F0 10.86624
24 x 64 1536 96D 60H |HH L L 0F3 9.09216
24 x 32 768 48D 30H | L HHL 0F9 5.544
16 x 32 512 32D 20H | L HLL 0FB 5.376
16 x 16 256 16D 10H | L L HL OFD 3.65568
At0Ag Ag A7
Figure C1.
56

W

W

ADTYPE CRT.DEF

yCRT DEFINITION FILK

i BY MCSEE M.
JREV 2 3/8/78

]
TITLE
WCRD

y

FE:
ZEROE ¢
S11:
I1s:
CN:
ZERCL:
Vkb:
FER:
CCEN:
MUXD:
MUX1:
MUXe:
MUX3:
PL:

H

S}
I

1

COUNT:
COUNTE :
COUNTV:

IND

A

SHAVIT

CRT CONTRCLLER --DEFINITIONS

24

LEF
LEF
DEF
DEF
DEF
LEF
DEF
DEF
DEF
LEF
LEF
DEF
DEF
DEF

EQU
EQU

DE
33
E

[l I
Ff g v

1VB#1,23X%
1X,1VE#1,22X
2X,2V%:Q4,20X
4X,4VH#,1€6X
9X,1VB#1,14X
10X,1VB#1,13X
11%X,1VB#2,12X
12X,1VE#2,11X
13X,1VE#,10X
14X,B#60,8X
14X,E#12,8X
14X,E#01,8X
14X,B#11,8X
1€EX,BV%:

B#d
B#1l

B#1,B#l,B#2¢,5X,B#1,B41,R4¢ ,B#2,1X,2X,8Y
B#1,B#1,B#@0,5X ,F#1,B#1,B#¢,B#1,1X,2Y,8X
B#1,B#1,B#0C,5X,541,58#1,5#1,B#1,1X,2X,8X

Figure C2. AMDASM Definition and Assembly Files for the CRT Controller.

57

AMLDOS /28 AMDASM MICRO ASSEMBLER, V1.1
CRT CCATKCLLER

goee

2eeg1
geez

2083
9004
gees
aeoe
aeev
peee
gees
200 A
2ees
2eac
eeer
ACK

@00E

gOCF
gele
ge11
801z
0213
2014

2015
2816

@17
peie

go1¢
BB1A
8018
8e1c
881D
0O1E
peLr
2020
ge21
eg22
ACK
9e22

2024
9825
@B2€
027

iCET CONTRCLLER MICROFROGEAM

b
yEY MOSHE M. SEAVIT
iREV 2 5/3/7¢

119

248¢€: 110

H#2

24 ROWS

H#E

/ CNL & HB H

110

H#C

/VB & PL D#23

M2480: 110
110
11¢
110
11¢
I1e
119
I1e
119
110

T2480: 110

110

H#E
H#Z
H#3
H#3
H#3
H#3
H#1
H#1
H#3
H#3
H#C

H#E

/ HBH & VB BH

110
I11¢
11e
110
110
110

GOBACK: I1@
LASTA: 118

C e e = s e

2464: 118

H#C
H#d
H#3
H#E
H#C
H#A

H#A
H#A

24 ROWS

E#6

/ CN L & HB H

110

H#C

/VB & PL D#23

M2464: 110
110
118
I1@
Ile
11e
118
110
112
T2464: 112

I1e
/ HB H &
118
118
110
110

H#E
H#3
H#2
H#3
H#3
H#1
BE#1
H#3
H#3
H#9

H#6

VB H

H#C
H#4
H#&3
H#8

;JUMP MAP

8@ CHARACTERS 60 F/S

&

& VB

&

&

& CCEN L & MUX1
& CCEN L & MUX1
& CCEN L & MUX1
& CCEN L & MUX1
& CCEN L & MUX1
& CCEN L & MUXO
& CCEN L & MUX2
& CCEN L & MUX1
& CCEN B &

&

&

rallea B walnglra R ea vl vl

CCEN L & MUX3 & 511 3 & FE L & ZEROH & ZERCL L &
511 @ & FE & ZERCH & ZERCL L & CNL & HE H &
$11 2 & FE & ZERCH & ZEROL L & CN & HE H & VE

COUNT & PL
COUNT & PL
COUNT & PL
COUNT & PL
COUNT & PL
COUNTH & PL T2488
COUNTH & PL LASTA
COUNTH & PL $

AN e e

S11 © & FE & ZERCH & EB H & VB & PL M248@
S11 @ &§ FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOE

CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
S11 @ & FE & ZEROH & HE E & VB H & PL D#146
MUX1 & COUNTV & PL 3%

FE L & ZERCHE L & ZERCL & CN H & ER H & VB

&

& CCEN L & MUX3 & COUNTV
& CCEN L &

& COUNTV

& COUNTV & PL D#23

& CCEN H & COUNTV

& CCEN H & COUNTH

& CCEN H &

64 CHARACTERS 6@ F/S

& CCEN L & MUX3 & 511 3 & FE L & ZERCH & ZEROL L &

& VB

& 511 ¢ & FE & ZEROH & ZEROL L & CN L & HE H &

& S11 2 & FE & ZEROH & ZERCL L & CN & HE H & VB
& CCEN L & MUX1 & COUNT & PL ¢

& CCEN L & MUX1 & COUNT & PL $

& CCEN L & MUX1 & COUNT & PL $

& CCEN L & MUX1 & COUNT & PL $

& CCEN L & MUX® & COUNTH & PL T2464

& CCEN L & MUX2 & COUNTH & PL LASTA

& CCEN L & MUX1 & COUNTH & PL %

& CCEN E & S11 ¢ & FE & ZEROH & HB H & VB & PL M24€4

& 511 @ & FE L & ZEROH & ZEROL & CN HE & HB H & VB & PL GOB
& CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &

§ S11 @ & FE & ZERCOH & HB H & VB H & PL D#122

& CCEN L & MUX3 & COUNTV

& CCEN L & MUX1 & COUNTV & PL $

& COUNTV

Figure C2 (Cont.)
58

% J

AMDOS /29 AMDASM MICRO
CRT CONTROLLER

PEZE
2025

2E2A
QL2E

gozC
@027
EOZE
gEZF
2e3e
gl
ge3z
B33
ACK
pe34

B35
BO3E
gB37
geze
2e3s
go3A

PO3E
Be3C

803D
PO3E
@O3F
ga4e
ge41
go4z2
2e43
7044
ACK
2045

g04€
ee4n
2048
2040
PE4A
@e4E
9840
pe4rD

Po4E
@e4F

Ile
116

2432: 110

H
H
i
) 24 ROWS
'
L
5

H#&C
H#A

h#6

/ CNL & HB H

1109

H#C

/VE & PL D#22

M2432: 112
119
110
118
110
11e
I11e
T2432: 112

I1e

H#E
H#3
H#3
H#1
H#1
H#2
HH#3
H#S

H#E

/ HB H & VB H

I1e
118
118
110
I1e
112

0 e s s as =

1€32: 112

H#C
H#4
H#3
H#B
H#C
H#A

16 ROWS

B#E

/ CNL & HB H

119

H#C

/VB & PL D#15

Mig32: 110
110
I1¢
110
Iie
119
110
T1€32: 118

I1e

H#E
H#3
B#3
H#1
H#1
H#3
H#3
B#9

E#6

/ HB E & VB E

116
I1e
118
110
I1e
110
110
1109
118
110

e eE e s

H#C
H#4
B#3
H#8
H#C
H#4
H#2
H#E
H#C
H#A

16 ROWS

ASSEMBLER, V1.1

& COUNTV & PL D#23
& CCEN H & COUNTV

32 CHARACTERS €@ F/S

CCEN L & MUX3 & 511 3 & FE L & ZERCH & ZEROL L &
VB
511 @ & FE & ZERCH & ZEROL L & CN L & HR H &

&
&
&
& 511 2 & FE & ZERCB & ZEROL L & CN & HR H & VE

& CCEN MUX1 & COUNT & PL $%

& CCEN MUX1 & COUNT & PL $

& CCEN MUX@ & COUNTH & PL T2422

& CCEN MUX2 & COUNTH & PL LASTA

& CCEN MUX1 & COUNTH & PL 3

& CCEN 511 @ & FE & ZERCH & HB H & VB & PL M2432
&

&

&

&

&

&

&

&

-l ol ol ol ol o)
e

S11 @ & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOB
CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL 1 &

S11 @ & FE & ZEROH & HB H & VB H & PL D#74
CCEN L & MUX3 & CCUNTV

CCEN L & MUX1 & COUNTV & PL $

COUNTV

COUNTV & PL D#23

CCEN B & COUNTV

32 CHARACTERS €@ F/S

& CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
& VB

& S11 @ & FE & ZEROH & ZEROL L & CN L & HR H &

& S11 2 & FE & ZEROH & ZERCL L & CN & HB E & VB

& CCEN L & MUX1 & CCUNT & PL %

& CCEN L & MUX1 & COUNT & PL %

& CCEN L & MUX@ & COUNTH & PL T1632

& CCEN L & MUX2 & COUNTH & PL LASTA

& CCEN L & MUX1 & COUNTH & PL $

& CCEN E & S11 @ & FE & ZEROH & HB H & VB & PL M1632
& S11 @ & FE L & ZEROE & ZEROL & CN H & HB H & VB & PL GOB
& CCEN L & MUX3 & 511 3 & FE L & ZEROH & ZEROL L &
§ S11 @ & FE & ZEROH & HB H & VB H & PL D#250

& CCEN L & MUX3 & COUNTV

& CCEN L & MUX1 & COUNTV & PL $

& COUNTV

& COUNTV & PL D#48

& CCEN L & MUX3 & COUNTYV

& CCEN L & MUX1 & COUNTV & PL §

& COUNTV

& COUNTY & PL D#15

& CCEN H & COUNTV

16 CHARACTERS 6@ F/S

Figure C2 (Cont.)
59

AMDOS /29 AMDASM MICRC ASSEMBLER, V1.1 \) :
CRT CONTROLLER

£e5e
2851

2852
2953
g@54
gest
¢@5€
2e5%
gece
ACK
8B5g

P@54
BE5B
gesc
9e5D
B@SE
@esy

0oFe
oe¥e

BOFZ
POF3

BOFS
goFrc

P@FE
POFE

BOFD
@erD

g1ee

01ee
g1e1

giez
glez
P104
2105
@le€e
g1a7
e1ee
g1¢¢
2184
¢10E
@1ec
ACK

S1€16: 11¢ H#¢€ CCEN L & MUX3 & 511 3 & FE L & ZEROH & ZEROL L &
/ CNL & HB H VB
116 H#C S11 @ & FE & ZERCH & ZEROL L & CN L & HB H &
/VB & PL D#15 L

M1€1€: I1¢ H#E 511 2 & FE & ZFROH & ZEROL L & CN & HB H & VE

&
&
&
&

112 H#3 & CCEN L & MUX1 & COUNT & PL §

I10 H#1 & CCEN L & MUX@ & COUNTH & PL T1616

11¢ H#1 & CCEN L & MUX2 & COUNTH & PL LASTA

I19 H#3 & CCEN L & MUX1 & COUNTH & PFL &

I1¢ H#Z & CCEN H & S11 @ & FE & ZEROH & HB H & VR & PL M1616

T1€16: 1I1@ H#9 & S11 @ & FE L & ZEROH & ZEROL & CN H & HR E & VE & PL GOER
11¢ H#E & CCEN L & MUX2 & S11 3 & FE L & ZEROE & ZERCL L &
/ HB H & VB H

I1¢ H#C & S11 @ & FE & ZEROH & HE K & VB B & PL D#203

110 H#4 & CCEN L & MUX3 & COUNTVY

I1¢ H#3 & CCEN L & MUX1 & COUNTV & PL 4

112 H#8 & COUNTV

119 H#C & COUNTV & PL D#15

110 H#A & CCEN H & COUNTV

]
ORG H#@FO ;24%80

11¢ H#3 & CCEN H & PL S2488

[ET—

ORG H#QF3 j 24%64
I1@ H#3 & CCEN H & PL S2464

—
.

ORG H#GFS ;24%32
119 H#3 & CCEN H & PL $S2432 1

€

ORG H#@FB 1 16%32
112 H#3 & CCEN H & PL S1€32

ORG H#QFD 116%16
11¢ .H#3 & CCEN H & PL 51616

5@ F/5 ROUTINES

ORG H#100
1
i 24 ROWS 89 CHARACTERS 5@ F/S
’
s
52480E: 110 H#€ & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ CN L & HE E & VB
116 H#C & S11 @ & FE & ZEROH & ZEROL L & CN L & HB H &
JVE & PL D#23
MZ2482E: I1¢ H#E & 511 2 & FE & ZERCH & ZEROL L & CN & HB H & VB
I1¢ H#3 & CCEN L & MUX1 & COUNT & PL $
I19 B4#3 & CCEN L & MUX1 & COUNT & PL $
112 H#2 & CCEN L & MUX1 & COUNT & PL 3%
110 HE#3 & CCEN L & MUX1 & COUNT & PL $
I19 H#3 & CCEN L & MUX1 & COUNT & PL 3
110 H#1 & CCEN L & MUX@ & COUNTH & PL T2480E
I11¢ H#1 & CCEN L & MUX2 & COUNTH & PL LASTA
I19 H#3 & CCEN L & MUX1 & COUNTE & PL $)
119 H#Z & CCEN H & S11 @ & FE & ZEROH & HE H & VB & PL M24B0E h)
T24EPE: 110 H#C & 511 @ & FE L & ZEROH & ZEROL & CN H & HB B & VB & FL GOB

Figure C2 {Cont.)

60 u

AMDOS/29 AMDASM MICRC ASSEMBLER, V1.1
CRT CONTROLLER

216D 11¢ H#6 & CCEN L & MUXZ & S11 3 & FE L & ZERCH & ZEROL L &
{ / HB H & VB H
\ y 219%E I1¢ H#C & S11 @ & FE & ZEROH & HE H & VB H & PL D#220 i ITERATES
201 TIMES
@1eF Ilg H#4 & CCEN L & MUX3 & COUNTV
8118 119 H4#3 & CCEN L & MUX1 & COUNTV & PL $
#111 110 H#8 & COUNTV
1
@112 I1¢ H#C & COUNTV & .PL D#239
8113 I11¢ B#4 & CCEN L & MUX3 & COUNTV
2114 I1¢ H#3 & CCEN L & MUX1 & COUNTV & PL $
2115 11@ E#8 & COUNTV
]
g11e I1¢ H#C & COUNTV & PL D#23
@117 110 H#A & CCEN H & COUNTV

24 ROWS €4 CHARACTERS 5@ F/S

@118 S2464E: 118 H#6 & CCEN L & MUX3 & 511 3 & FE L & ZEROH & ZEROL L &
/ CNL & HE E & VB

gl1¢ 11¢ B#C & 511 © & FE & ZEROH & ZERCL L & CN L & HB H &
/VB & PL D#23

©11A M2464E: I10 H#E & S11 2 & FE & ZEROCH & ZEROL L & CN & HE H & VB

@118 11¢ H#3 & CCEN L & MUX1 & COUNT & PL $

@11cC I1¢ BE#3 & CCEN L & MUX1 & COUNT & PL $

@110 1180 E#2 & CCEN L & MUX1 & COUNT & PL 3

g11E I1¢ H#3 & CCEN L & MUX1 & COUNT & PL $

#11F 116 H#1 & CCEN L & MUX@ & COUNTE & PL T2464E

g g1z2e 119 H#1 & CCEN L & MUX2 & COUNTH & PL LASTA
(/ @121 11¢ H#3 & CCEN L & MUX1 & COUNTH & PL %

@lzz I1¢ H#3 & CCEN H & S11 @ & FE & ZERCGH & HB E & VB & PL M24€4E

@122 T24€4E: 110 H#9 & S11 @ & FE L & ZEROH & ZERCL & CN H & HB H & VB & PL GOB

ACK

@124 I11¢ H#€ & CCEN L & MUX3 & 511 3 & FE L & ZEROH & ZEROL L &
/ HBR H & VB H

@125 I11¢ H#C & 511 @ & FE & ZERQH & HB H & VB H & PL D#2¢0

g12€ 119 H#4 & CCEN L & MUX3 & COUNTV

g1z27 112 H#3 & CCEN L & MUX1 & COUNTV & PL $

@1z& I1¢ H#8 & COUNTV

1

912¢ I1¢ H#C & COUNTV & PL D#167 1 BES

@lzh 119 H#4 & CCEN L & MUX3 & COUNTV

212E 112 H#3 & CCEN L & MUX1 & CCUNTV & PL $

g12C 116 H#8 & COUNTV

¥
@12D 118 H#C & COUNTV & PL D#Z3
@12E I1¢ H#A & CCEN H & COUNTV

24 ROWS 32 CHARACTERS 5@ F/S

@12F S2432E: 110 H#6 & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ CNL & HEB H & VB
0130 11¢ H#C & S11 @ & FE & ZEROE & ZEROL L & CN L & HB H &
/VB & PL D#23
$131 M2432E: I1¢ H#E & S11 2 & FE & ZEROH & ZEROL L & CN & HB H & VB
4 @122 110 H#Z & CCEN L & MUX1 & COUNT & PL $
Kh_/ 0133 116 H#3 & CCEN L & MUX1 & COUNT & PL &
@134 I1¢ H#1 & CCEN L & MUX@ & COUNTH & PL T2432F
8135 118 H#1 & CCEN L & MUX2 & COUNTE & PL LASTA
2136 I19 H#3 & CCEN L & MUX1 & COUNTH & PL $

Figure C2 (Cont.)

(_,/ 61

AMDOS /28 AMDASM MICRO
CRT CONTROLLER

2137

g138
ACK

9139

2134
@13E
#13C
@13D
Z13E
@13F

2140
g141

@14z
2142
gl44
9145
7146
2147
2148
@lac
ACK
P144

Pl4E
214C
914D
@l4E
@14F
2159
2151
9152
@152
gl54

2155
8156

8157
2188
g15¢
2154
@15B
815C
215D
ACK
@15E

B1EF
@160
glel
glez

110 H#3
T2432E: 110 H#9

110 H#E
/ HB H & VB H
116 H#C
110 H#4
110 H#Z
110 H#8
11 H#C
I1¢ H#A

16 RQWS

1€632E: 110 H#E
/ CN L & HE H
110 H#C

/VB & PL L#15
M1€32E: 118 H#E
11¢ H#2Z

112 H#3

116 H#l

116 H#1

11¢ H#3

118 H#3

T1632E: 110 H#E

110 H#€
/ HE H & VB H
I1@ H#C
116 H#4
110 H#3
I11¢ H#E
118 EH#C
110 H#4
110 H#3
119 H#8
116 H#C
116 H#A

16 ROWS

[F TR

1€16E: I1¢ H#6
/ CN L & HE H
116 H#C

/VB & PL D#15
M1€1€E: 110 H#E
110 H#3

I11¢ H#1

I11@ H#1

116 H#3

116 H#3

T161€E: I10 Hat

I1@ H#6
/ HBH & VB H
I1e H#C
11@ H#4
119 H#3
I11¢ H#E

ASSEMBLER, V1.1

& CCEN H & S11 @ & FE & ZERCH & HB H & VB & PL M2432E
& 511 @ & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOE

& CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &

S11 @ & FE & ZEROH & HB H & VE H & PL D#224
CCEN L & MUX3 & COUNTYV

CCEN L & MUX1 & COUNTV & PL &

COUNTV

COUNTV & PL D#23

CCEN H & COUNTV

e e

32 CHARACTERS 5@ F/S

CCEN L & MUX3 & 511 2 & FE L & ZEROH & ZEROL L &
VB
S11 @ & FE & ZEROB & ZEROL L & CN L & HB E &

S11 2 & FE & ZEROB & ZEROL L & CN & HB H & VB

CCEN L MUX1 & COUNT & PL $

CCEN L MUX1 & CCUNT & PL $

CCEN L MUX@ & COUNTH & PL T1632E

CCEN L MUX2 & COUNTH & PL LASTA

CCEN L MUX1 & COUNTH & PL %

CCEN H 511 @ & FE & ZEROH & HB H & VE & PL M1€32E

S11 @ & FE L & ZEROH & ZERCL & CN H & HB H & VE & PL GOB

&
&
&
&
&
&

CCEN L & MUX3 & 511 3 & FE L & ZEROH & ZEROL L &

S11 @ & FE & ZEROH & HB H & VB H & PL D#25@
CCEN L & MUX3 & COUNTV

CCEN L' & MUX1 & COUNTV & PL 3

COUNTY

COUNTV & PL D#223 1475

CCEN L & MUXZ & COUNTV

CCEN L & MUX1 & COUNTV & PL $

COUNTYV

COUNTV & PL D#15

CCEN H & COUNTV

e o PP P>

16 CHARACTERS 5@ F/S

CCEN L & MUX3 & S11 2 & FE L & ZEROH & ZEROL L &
VB
$11 @ & FE & ZEROB & ZEROL L & CN L & HB H &

S11 2 & FE & ZERCE & ZEROL L & CN & HB H & VB

CCEN L & MUX1 & COUNT & PL ¢

CCEN L & MUX@ & COUNTH & PL T1€1€E

CCEN L & MUX2 & COUNTH & PL LASTA

CCEN L & MUX1 & COUNTE & PL $

CCEN H & S11 @ & FE & ZEROH & HB H & VB & PL M161€E

S11 @ & FE L & ZEROH & ZERCL & CN H & HB H & VB & PL GOB

e e

CCEN L & MUX3 & 511 3 & FE L & ZEROH & ZEROL L &

511 @ & FE & ZEROE & HB H & VB H & PL D#200
CCEN L & MUX3 & COUNTV

CCEN L & MUX1 & COUNTV & PL $

COUNTV

e

Figure C2 (Cont.)
62

W

L4

o,

AMTCS/29 AMDASM MICRO ASSEMBLER, V1.1
CRT CONTROLLER
1
9162 I11@ H#C & COUNTV & PL D#121 1323
@164 I1¢ H#¥4 & CCEN L & MUX3 & COUNTV
2165 I1¢ H#3 & CCEN L & MUX1 & COUNTV & PL %
9166 110 H#g & COUNTV
1
Qle7 I11¢ H#C & COUNTV & PL D#15
@168 110 H#A & CCEN H & COUNTV
]
@1F@ ORG H#1F@ ;24%820
21F@ 110 H#3 & CCEN H & PL S24B@E
H
)
g1Fz ORG H#1F3 124%E4
@1F3 110 HE#3 & CCEN H & PL S2464E
H
]
@1Fs ORG H#1F9 ;24%32
@1Fs I119¢ H#3 & CCEN H & PL S2432E
H
r
@1FB ORG H#1FB 3 16%32
@1F3B 116 H#Z & CCEN H & PL S1632E
H
1
@1FL ORG HE#1FD y16%16
¢1FD 110 HE#3 & CCEN H & PL S1€1EE
H
H
END
Qeee XXXX@Q1@XXXXXXXX XXXXXXXX g2 212010P1X11@1XXX
9021 9111011€X0001011 XXXXXIXX 20223 91119110XX911611
Pegz 11¢01100X0001XXX 00010111 g¢24 11091160XXX11XXX
9003 11121119X1001XXX XXXXIXXX @e25 11000100X11110811
geg4 11000011X1100010 000001060 P@2€ 11000@011X1111010
@ees 1100e911X110001¢ @veve1e1 @e27 11001008X1111XXX
@P0€E 112000911X1100010 20000110 ge2e 119001100X1111XXX
geev 1100¢011X1100€10¢ 20000111 g@2¢ 11001218X11111XX
PePE 11¢00011X110601¢ C0Q0P10GLO 9224 €11109110X0001011
PPOS 11000001X1101000 00001101 PEZ2B 110201100X00€1XXX
POCA 11000001X1101001 90010110 @92C 11121110X10@01XXX
Pe0B 11¢20011X1101010 @0OR1211 PP2T 1100€011X1100010
P90C 11000011XXX211XX 90000011 ge2E 11002011X11¢2001@
2eer @1¢012€1X1101XXX @20e1@181 @@2F 11000€01X1101020
POCE ©1110119XX011911 XXXXXXXX g03@ 1100000131101001
PeOF 11001100XXX11XXX 10010010 @21 119000011X110101¢
P21 11000160X1111211 XXXXXXIXX 2832 11000@011XXX@011XX
P211 11000011X1111019 20010001 Pe33 P1661001X11601XXX
P@12 11001000X1111XXX XXXXXXXX ¢34 9111¢119XX011@11
2213 116@1100X1111XXX 90016111 P35 11091100XXX11XXX
9214 11901216X11111XX- XXXXXIXX @e3€ 11000100X1111611
@815 11091918X11011XX XXXXXXXX 2037 119000011X11116810
ge16 PeXX1018X11011XX XXXXXXXX 9038 11001008X1111XXX
@17 ©11101190X0001011 XXXXXXXX Pe3c 11091100X1111XXX
@21E 110901100X0001XXX 20016111 ge34 11001012X11111XX
2219 11121112X18@1XXX XXXXIXXX P@3B 21110118X0601¢11
@C14A 11000011X1100010 00011010 gO3C 11001100X0@01XIX
PO1B 11000011X1160010 @0011011 g83D 11101110X1¢01XIX
g21C 11000011X1100010 00011120 @g@3F 11000@11X112001¢
@210 11000011X11000106 00011101 @03F 11606011X1106010
PP1E 110€¢001X1101000 00106010 PP4A@ 11000001X1121000
ZE€1F 1100¢0201X1101001 00€10112 P2041 11900001X1101601
2022 11000011X11¢1010 060100820 o042 11060011X1101010
@021 11000011XXX0@11XX Q0011001 P043 11900011XXX011XX

Figure C2 (Cont.)

63

eee1e1e1
XXXXXXXX
@1111010
XXXXXXXX
20109110
XXXXXXXX
gep1€111
EXXXXXXX
XXXXXXXX
geo1e111
IXXXXXXX
00101101
01011106
P@118611
20012112
90110201
90101100
00010101
XXXXXXXX
21001010
XXXXXXXX
80110111
IXXXIXXX
20216111
IXXXXXXX
XXXXXXXX
GePe1111
XIXXXIXXX
00111110
80111111
01000100
90010110
21000010
26111101

AMDOS/29 AMDASM MICRO ASSEMBLER, V1.1
CRT CONTROLLER

0044
2845
gv4¢€
2047
2046
ge49
BO4A
0048
ge4cC
064D
PO4E
Ae4F
417
2851
@052
g5z
254
2pes
ge56
2e57
@058
205¢
P@5A
2458
gesc
ge5D
BB5E
#O5F
oere
QOF3
@@Fg
BEGFB
G@FD
2100
g1e1
9162
81ez
9184
2185
g1d6
glew
2108
918¢g
21oA
@19B
g1ec
@1ep
812k
010F
9110
9111
gliz
2113
2114
2115
g1ll€
@117
118
2119
@11A
@11E
g11cC
11D

@1001601X1101XXX
91118110XXP11011
110@1100XXX11XXX
11020160X11110611
1160¢011X1111010
11601068X1111XXX
11001166X1111XXX
11000100X1111911
11000011X1111010
11601066X1111XXX
11261168X1111X3X
11601016X11111XX
$1110110X0001011.
11¢01108X0801XXX
11181116X1001XXX
11606011X1100016
11060001X11210€0
11000901X11010901
11900011X1101018
11000011XXX011XX
21001001X1101XXX
91110116XX211611
11801106XXX11XXX
11000106X1111911
11000011X1111610
11601060X1111XXX
11001188X1111XXX
11601010X11111XX
XXXX@211X¥ XXX 1XX
XXXX@@11XXXXX1XX
XXXX@211XXXXX1XX
XXXX@011XXXXX1XX
XXXX@011XXXXX1XX
21110110X6001011
1100118930021 XXX
11121118X1801XXX
11000211X11060010
110¢0011X110€01¢
112006011X1100018
112006011X1100010
11600011X1102010
11000001X1101000
110006001X1101001
1100¢911X1101018
1100801 1XXX@11XX
91001061X1101XXX
$1110116XX011611
11881188XXX11XXX
11900106X1111011
11000011X1111018
11001066X1111XXX
11601166X1111XXX
11000100X1111011
11006011X1111018
11001600X1111XXX
1166118@X1111XXX
11801016X11111XX
91110110X6061811
11001160X8801XXX
11101110X1861 XXX
11000011X1100016
11000011X1100010
11000011X1100610

PeP10101
IXXXXXXX
11111010
XXXXXXXX
21001060
IXXXXXXX
0e110000
XXXXXXXX
21091162
XXXXXXXX
90801111
XXXXXXXX
IXXXXXXX
20901111
XXXXXXXX
210106611
819110060
20010110
01016110
gleleele
0egl191e1
XXXXXXXIX
11601011
XXXXXXXX
10111690
XXXXXXXX
PP6@1111
XXXXXXXX
egoeenel
gecdie111
09101210
2e111911
01010000
XXXXXXXX
20010111
XXXXXXXX
eeoeoa11
20000100
pecesiol
oeees11a
20900111
000211060
00010110
¢epelele
6000010
pPP1e1e1
XXXXXXIX
11001089
XXXXXXXX
2e0100080
XXXXXXXX
11121111
IXXXXXXIX
00010100
XXXXXXXX
00916111
XXXXXXXX
IXXXXXXX
g0016111
XXXXXXXX
90911911
060811100
20011101

Figure C2 (Cont.)
64

@11E
@11F
@12e
@121
@122
g122
@124

@125
8126
g127
glzs
@1z2¢c
@124

@12E

@12C

812D
@12F
B12F

6130

2131

9122

2133

9134

9135
213¢€
@137
2138
8138

8134

@13B

@13C

@130
@13E
@13F
2140
2141
B0l4az
8143
0144
9145
@14¢€
@147
Bl4ag
g14c
B144

G14E
#14C

214L
@14E
214F
215@
@151
9152
9152
2154
@155
@156
@157
215&
@15¢
@154
@15E
@15C

11000611X110001¢
11000001X1101000
110000601X11016081
11¢0@011X1101¢210
11000011XXX811XX
€1001001X1101XXX
#1110110XX@011011
11001100XXX11XXX
11000102X1111011
l1¢¢e611X111101¢€
11021000X1111XXX
11801100%1111XXX
11000106X1111211
11000011X1111010
11001006X1111XXX
1100110¢X1111XXX
11001016X11111XX
©1110110306001011
11001100X2@21XXX
11161116X1681XXX
11000611X1126010
11002011X1100010
11000001X1101000
11000001X1101001
11000011X1121210
11900011XXX211XX
21001001X1101XXX
©1110118Xx@11211
11001100XXX11XXX
110¢0100X1111011
11e@@e11X111101¢@
119001000X1111XXX
11001100X1111XXX
11001910%11111XX
@lli1ei11exeoviell
11001100X0801XXX
11101119X18@81XXX
11¢00011X1100910
11000011X1100610
11000001X1101080
11000001X11016081
110060011%11021010
11000011XXX011XX
21601061X1101XXX
©11106110XX011811
11€001100XXX11XXX
11000100X1111011
11000011X1111018
110¢100¢X1111XXX
11001180X1111XXX
1166€106X1111011
11¢@0011X1111@1@
11001906X1111XXX
110€1100X1111XXX
11601012X11111XX
9111¢110X0001611
11061100X0001XXX
11101116X1081XXX
110660011X11006610
11¢00001X1161000
110eeep1X1121001
11000611X1101010
11002011XXX811XX

gee1111e
20100011
gep1011e@
210001
30011010
PoP161061
IXXXXXXX
110¢1000
XXXXXXXX
P0100111
IXXXXXXX
101906111
XXXXXXXX
gele1e11
XXXXXXXX
pee10111
XXXXXXXX
XXXXXXXX
20P1€111
XXXXXXXX
0110610
gel11ee11
29111000
00010110
ge1ielie
gel1oeel
e0010101
XXXXXXXX
11100008
XXXXXIXXX
00111100
IXXXXXXX
PeP16111
XXXXEXIX
XXXXXXXX
00001111
XXXXXXXX
91600011
01000100
0121001
20010110
01000111
21000010
00218101
XXXXXXXX
11111e1@
TXXXXXXX
g18011@1
XXXXXXXX
11011111
XXXXXXXX
@leleeel
IXXXXXXX
Peee1111
IXXXXXXX
IXXXXXXX
peee1111
XXXXXXXX
21011000
#1911161
geeie11e
g1911@11
g1e1e111

L.

G

AMLOS /26 AMDASM MICRO ASSEMBLER, V1.1
CRT CONTROLLER

215D
215E
@15F
2160
2161
g1e2
B1E3
0164
2165
216€
21e7
2168
21Fro
@1F3
B1Fc
@1FE
@1FD

ENTRY

21e001081X1181XXX
©1119110XX011011
11001100XXX11XXX
116001206X1111@11
11960011X1111012
11001000X1111XXX
11001100X1111XXX
11000108X1111€11
11g@éee11xiiliele
11001000X1111XXX
11021100X1111XXX
110€1016X11111XX
XXXX@@11XXXXX1XX
XXXX@@11XXXXX1XX
IXXX@011XXXIXX1XX
XXXX@@11XXXXX1XX
XXXX@011XXXXX1XX

POINTS

SYMBOLS

GOERACK ge15

H
L

LASTA
M1E1E

geel
aeoe
1€
gesz

M1E16E @157

M1E3Z

€e3D

M1ESZE 2142

M24322

@gzc

MEZ43ZE 2131

M24E4

gele

MZ2464E 2114

MZ4EE

2gec

MZ2480E 2102

S1€1€

2ese

S1E16E 2155

S1€32

223E

S16I2E 214¢

52432

PezA

S2432F 212F

Sz4€4

ge1v

S2464E @118

52460

2201

S24E6E glee

T1€16

gese

T1€E16E 215D

T1622

ges4s

T1E3ZE 2146

T2432

2833

T2432E @128

Tz464

ggze

T2464F @123

Tz248€

2eeD

T248CE 21eC

TCTAL

PHASE 2 ERRCRS =

0ee101@1
XXXXXXXX
11601068
XXXXXXXX
91100001
XXXXXXXX
p11118061
XXXXXXXX
01100101
XXXXXXXX
00001111
XXXIXXXXX
oeoeeeee
00011000
00181111
01000020
219106101

@

Figure C2 (Cont.)
65

o

APPENDIX D

The Microprogrammed CRT Controller was built on a System 29
universal card and exercised by the System 29 support proces-
sor. An Am9080A program was written to fill the character mem-
ory. Figure D1 is the listing of this program. In order to observe the

5
;FROGRAMM TO WRITE INTO
sBY MOSHE M. SHAVIT
sREV 0 3/6/78

correct output of the controller, an oscilloscope or CRT monitor
can be connected through an adaptation circuit shown in Figure
Da. |

CHARACTER HMEMORY

¥
O1FF = STACK EQU 1FFH ;STACK POINTER
00FF = FAR EQU OFFH sFIRGT ADNRESS REGISTER 0/F FORT
8000 = CHARAT EQU 8000H :CHARACTER MEMORY STARTS HERE '
0200 ! ORG STACK+1 ;UORKING SPACE ABOVE STACK
0200 Fa ons 1 :FIRST ALDRESS
0201 CURAD DS 2 ;CURRENT ADDRRESS
0203 FIL s 2 sACFIRST CHARACTER IN LINE)
¥
0100 ORG 100H ;FROGRAN STARTS HERE
0100 31FFO1 LXT SF,STACK
0103 213087 LXI H,720H+CHARAD ;LAST LINE, FIKST CHARACTER
0106 220302 SHLD FIL ;IN "FIRST CHARACTER [N LINE® BUFFER
0109 220102 SHLD CURAD jAND IN CURRENT ALDDRESS BUFFER
010C aF XRA A sCLEAR A
0100 D3IFF ouT FAR ;START ADDRESS=0
010F 320002 STA Fa ;SAVE IN BUFFER
0112 CD1EO1 CALL CLEAR 3CLEAR ALL CHAR. MEMORY
0115 CO2C01 MAIN CALL CHARIN READ CHARACTER AND FUT IN CHAR. MEMORY
0118 C31501 JHF MAIN ;00 IT AGAIN
7
5 (\
011k 04600 CLEAR MUI E,0 sDATA=0
0110 210080 LXI H, CHARAT ;FIRST CHARACTER ADDRESS \J
0120 110008 LXI 0,20480 ;COUNTER
0123 70 CLEAR1 MOV M, E :CLEAR THAT ADDRESS
0124 1E nCX o : COUNT
0125 23 INX H ;NEXT ADDRESS
0126 74 MO A, T ; CHECK
0127 B3 ORA E ; IF DONE
0128 C22301 JNZ CLEARL sNO. CONTINUE
012E €9 RET (YES. BACK TO CALLER
3
¥
012C 0EO1 CHARIN MVI c,1 ;CF/M READ COLE
012E COO500 CALL 5 ;CF/M READ ROUTINE
0121 FE1A CFI 14H ;CTL-Z7
0133 CA0000 Jz 0 sRETURN TOD CPM IF YES
0136 240102 LHLD CURAD ;FETCH CURRENT ADDRESS
0139 FEOD CPI ODH ;CR?
013F CA4401 Jz CRLF ;YES.
013E 77 MOV M,a ;URITE CHARACTER
013F 23 INX H ; INCREMENT
0140 220102 SHLD CURAD ;STORE IN BUFFER
0143 C9 RET ;BACK TO CALLER
H
0144 ES CRLF FUSH H
0145 IS PUSH o
0146 C5 FUSH B
0147 FS FUSH FSU
0148 1EOA MUT E,O0AH
014A OEQ2 MYI c,2
014C CLOS00 cALL 5
014F F1 FOF FSu
0150 C1 FOP H
0151 D1 FOF I \ ,)
0152 E1 FOF H ;ROUTINE TO ECHO LF
0153 EE XCHG ;5AVE CURRENT ADDRESS IN IE
Figure D1

66

@,

0154 015000 LXI E,B0D 380 CHARACTERS/LINE
0157 2A0302 LHLD FIL sFETCH FIRST CH. IN LINE ADDRESS
015Aa 09 DAD E sHL= A(NEXT LINE'S FIRST CH. ADD.)
015F EER XCHG s HL=CURRENT ADDR.,DE=A(NEXT LINE FIRST CH. ADDRD)
015C 0400 MVI B,0 sDATA=0
015E 7C CRLF2 MOV AyH sMORE SIGNIFICANT CURRENT ADDRESS
‘ 015F BA CHF o 3=NEXT LINE FIRST ADDRESS?

0160 C24B01 JNZ CRLF3 $NO
0163 70 MOV A, L sLESS SIGNIFICANT CURRENT ADDRESS
0164 BE CMF E $I5 CURRENT LINE FULL?
0165 CAGDO1 JZ CRLF4 YES
0168 70 CRLF3 MOV M,B sSTORE 0 AT THAT ADDRESS
0169 23 INX H 5 INCREMENT ADDRESS
0146A C3ISEOL JHF CRLF2 ;GO CHECK AGAIN
016D 7C CRLF4 MoV AyH sMORE SIGNIFICANT PART OF ADDRESS
016E E&O7 ANI 7 sONLY 3 LESS SIGNIFICANT BITS
0170 FEO7 CPI 7 ;LAST LINE PASSED?
0172 C27E01 JNZ CRLFS sNOT YET
0175 7D MoV A,L sLESS SIGNIFICANT BYTE OF ADDRESS
0176 FEBO CFI BOH sARE WE AT 7BOH=1920D7
0178 C27E01 JNZ CRLFS sNOT YET, SKIF
017B 210080 LXI H,CHARAL :YES, START WRITING AT BEGINNING OF CH. MEM.
017E 220302 CRLFS SHLD FIL sSTORE IN FIRST CH. IN LINE EBUFFER
0181 220102 SHLD CURAL sAND IN CURRENT ADDRESS BUFFER
0184 3A0002 LA Fé sFETCH FIRST VISIIELE CHARACTER ADDRESS
0187 C605 ADI] $SCROLL
0189 FE78 CFPI 120D ;TOD MUCH?
018B CC?401 CZ CRLFO sYES
018E 320002 STA Fa 3STORE IN FIRST ADDRESS BUFFER
0191 D3FF ouT FAR sLOAD REGISTER
0193 C9 RET ;RETURN TO CALLER

¥

¥
0194 AF CRLFO XRA A ;FIRST ADDRESS=0
0195 C% RET

Figure D1 (Cont.)

Oscilloscope Connections.

13y VIDEO &
VB BLANKING

2 12
HEB O
D
us1

VIDEQ

2 4
ALE (HORIZONTAL)
l EP o AL .| +5Y SYNCH

14

1Ag 1Yy
+5V uso 12k

AmZ5L5240 ¥
‘ 1 g 22001
24, 2¥, _W"T'f:lf:-:mu
(INVERSE)

GAD 26 1uF

|||E
||H

Ball Monitor Interface.

+5V

Am26502

L1, o

33k

.

HB >——— 1

Cx Rx/Cx 6| Cx RxiCx
Vee

=

+5vV

w
—1 8l

HORIZONTAL
DRIVE

: va)—-—-r“— h
vy
L

VERTICAL
DRIVE

MPR-502

Figure D2.
67

1 | | =
Ry1Ryg Rig Ag Rz Rg Rg Ry Ry Rz Ry Ry
MULTIPLEXER SELECT e deebilala Al Jalalsle
16y 1Cy 1€, 1Cy D C B ACLR D C. B ACLR O C B ACLR
15 10 15 10 18 10
Rap Ria Rig Ry7 SELECT |, & : s & B AL -) AR P i 3 =
0 0 0 0 TEST 0 amzsLs153 B 3 Am25LS163 AmP5LS183 AmZELS163
0 0 0 1 TEST 1 L v & OAD P cP [OAD P cCP IOAG P cP
0 0 1 0 TEST 2 = 7 9172 9172 o B =
. 0
. .
0 . !
1 1 1 1 TEST 15 Vee 3 —
t Dn
1 []
R mrasia
o
POLARITY CONTROL =
R1g OUTPUT
0 COMPLEMENT
OF TEST TEST 15 i1
3] TRUE TEST TEST 14 ul
TEST 13 I
TEST 12 T
TesT 11 b e
Dy Am745251
TEST 10 El =
TESTQ al et
NEXT ADDRESS CONTROL TeErs A D1 v e R
o
c Aaas afi=
Ris Ri1s4 Ri13 Ri2 FUNCTION 9|‘° e = :
NEXT | 28
X X X X Uiz
INSTRUCTION e }—l
= 7 [
TEST 7 2l TNT _ TNTLOAD| ,
TEST 6 o) [ENABLE jare
Dg 15 4 10 {2
TEST S 14 G 1 TEST FE
TEST 4 5| 8 r S =
MACHINE INSTRUCTION REGISTER Oy Ura — - ug PP
REST L Dg TAS2E1 Amz2o811a 51 2
TEST2 2 il =] 5
Ra21 FUNCTION = H o, wh 2 ol
0 LOAD TESTO [E‘ o L = FLE
o
1 HOLD J__ C B oGAS =l 1z 4
= o] w|] 7 1| 13| 12] n ==
fiyg |Fag [R17 |Rao | 2o Rig | R1s [Rag |Paa |Raz
Veo Vee ZERD
CONTROL VALUE 1of 7] 2f 15|] 1z| 0] 7] 5| 2
Q; O G 03 Oy 1 1 0 0 0 O G |0
Uga CLR CLR Uyz Qg
R11-Ro FUNCTION AMI4S175 = Am745174 g
EO.& SRR 6.9 4 VALUE Dz DBy Dy D by Dy D Dy Dy Dg
T 5| s n] s] &] 3] 1
e A © 15 14 13 12 2
JUMP ADDRESS
BR11-BRg FUNCTION
KKK - XXX JUMP ADDRESS
(Rg—~Rqql

Figure

D15 D14 013012 011049 Oy Dg

16-BIT DATA BUS

DOy 05 DypDy-Dy Dy Dy

1w|17|14|13| 8| 7| 4| 3

8D 7D 6D 5D 4D 3D ZD 1D
Uy 1

Am2ELSITT

80 7Q 60 50 40 30 20 10

Wwle 1512 9| €| 5| 2

P b—

1817|14]13]| 8| 7] 4] 3

8D 7D 6D 5D 4D 3D 2D 1D
1] Uy

Am25LS3TT
BQ 70 6Q 50 40 30 20 1Q

E CP b—

19[16]1s] 12 o] 6] 5] 2|

OTHER
I
5] 1] 2| 3| 4| 7| | s 5] 1] 2] 3] a] 7| 6] 5 5] 1] 2| 3] ¢f 2| 6| s
A7 Ag Ag Ag Az Ag A Ay Ay Ag Ag Ag Ay Ag Ag Ay A7 Ag As Ag Ag Ay Ay Ag
L 1. Uy _|1e Ug 14
Amz761 = Am29761 = Am29761 &
03 0z 07 O s O3 03 07 Og &5 | = 03 02 0 O s | =
a[wf 1]z 131 a[w][11]12 1:31' a[10]11]z |3I
BRyy
BRyg
BRy
BRg
BRy
8Rg
BAg
B8R,
By
BR;
B8Ry
BRg
_L 4| 5| 6] 7 4| 8| 8] 7 a| s} 8] 7
g D3 P20y Dy 7 18] P2P2 P 5 o i |- lee Dy Iy -
18 S 77 ol] S E doc
FE RE FE RE — FE RE }—
20 20
PUP Ug PUF Uy 2 PUP Ug
n 5 Am2011 L 55 Am2911 n 5 Am2911
L 1 10
Sg cP sy e — s cr cLOCK
__|e £ 2
ZERD OE —{ ZERO [AR —{ ZERD o |5,
Y3 Y2 ¥y Yo Y3 ¥z ¥3 Yo S)
1514 13] 12 15[18[13[12 5[] 13[12
OE
M1 Mg Mg Mg M7 Mg Mg M, M3 My My Mg
MICROPROGRAM MEMORY
IFiTlTIIIII]!II|I|I[fll!fll['lII]TITITI[]’IIIlllllll'llllllllll
&0 56 52 43 a4 40 36 a2 F:] 24 20 16 12 a 4 o
1z-21}
o-11)
e —_—)
L G| ey e | ER ot i R e Bl
5] 2] &] 4]] 12| 4] 1] 1] 2] a] 4]
Dy Dy Dy Dy b3 Dz Dy Dy Bafspy 1Dy Dy
7 u. 9 7 u 9 ! u. L]
— ol o 18 cp p— oF Lk cp f— oE o cp
Am2913 Amz918 Am2918
Oy Oy Oy Gy Y3 Y2 ¥y ¥p 0y Oy Oy G ¥ ¥p ¥y ¥y O3 Op Oy Gy ¥y ¥y ¥y ¥y
u[n] s] 2|13 IUI BEl n||1! 5| 2'\3 |n| & 3| "I”I 5] 2I13 mI 6 3—[_
RyyRyg Rg Ry | BRyp | BRg Ry Rg Rg Ry BRg | BR, Ry Ry Ry Rg | BRy | BRy
BRyy BRy BA; BAg BRy BR,
T II | (BRg—BR,q)
7. Computer Control Unit with Am2911. MPR-503

MULTIPLEXER SELECT <

Vee
1]
| 1 = e
maa. Bia-Risafan SELFCT] 1 R11 P Ry R Ry By Bs Ry Fauha iRy
0 0 0 0 TEST 0 €] 5| 4] 3 6] s| «] 3] 4 6| 5] 4] 3] 1 NEEER
0 0 0 1 TEST 1 g 1y W 103 D ¢ 8 act | D C B ACLR DocoB ACR |
0 0o 1 o TESEo Uz el e, & wiRtlen Suoe b feo iR
* 1, Amastsisz AmIBLEIES op |2 AmMZ5LE1ES cP=_| AmZELENF op |2
: [Y oA B [P (OAG P [GAD
. . = 7[1a 21 1| 91 1[9! r| a
1 1 1 | TEST 15
1 |]
Veo
3
% fan J
POLARITY CONTROL .
AmT45174 = a
R1g QUTPUT %
] COMPLEMENT OF TEST
1 TRUE TEST TEST 15 -] P8 |2
TEST 14 o4 o U | 1wy |5
TEST 13 A0
L o, VYu 5 P wo Y vl
TEST 11 - ¥l— v, P2
NEXT ADDRESS CONTROL =% g: ST 1 e
TESTS By 2v, |10
Z¥. B
Ris Ria Rz Rz FUNCTION TeSTE I g ! T
NEXT ol w| 1 7 2 3l w2
X X X x
INSTRUCTION
TEST INPUTS
CONDITIONAL
TEST
MACHINE INSTRUCTION REGISTER .
TEST? 12 (3 3 ¥ 5 L5 [y
R21 FUNCTION TeaTs o 3 & = ioas e [
TESTS 1 T e
0 LOAD TesTs T o e Huwooy, w8 rur -
1 HOLD TEST3 ez ammaszs AmT45168 s 'Is
TESTZ 2] o, 15 s o] amessna S o
TEST 1 3o, G 1w TEST FLE p— 11
15 :
Ea G i L s
COUNTER VALUE = 9] wo} nl 7 1 1] 13 z| n =
Rip [%1a P17 (R0 |20 Rig |F1s |Faa | Bey “ulﬁn
7 2] 15 14 v, 12| 10 7 5 2] 15 l—
Rq1-Rg FUNCTION o 6 & 05 & T |5 [a o o o % o e
KAK KKK VALUE Uiy P £ L] P g
AmT4S1T5 AmT45174
By Dy By 0y Pg Dy
B EEE
JUMP ADDRESS Mg Mg My My Mig My Myg Myg My My,
BRq1-BRg FUNCTION
KAK - XXX JUMP ADDRESS SLOTE
OR BRANCH CONTROL
Rzs R24 R23 R22 FUNCTION
TEST
X % P X INSTRUCTION Ak

Figure 1

P15 D1g Bq3042

168IT DATA BUS

Dy Oy Og Dy Ba By Dy By

w7 af3f 8| 7| 4f 3 wf17f1af13]| 8| 7| 4f 2
N D EECEELEEE
e |4 t E L
" 1
= AmIELENTT o PURZSA SEETT OTHER STARTING
8070 62 50 40 30 20 10 50 70 60 50 40 30 20 10 JSODRESS
e
wls|s)iz] of 8] 5 wlie]e]az] o]] 5] 2| R
E.E E E &
R [WEETT e T
OTHER E & K BB
1
5] 1] 2] 3]] 7] 6] s 5] 1] 2f 3] of [6] s ARE RN 14| 3] 12| 1] 10 1a] 13 12| n| w0
Ay ho Bg By A3 8 M g Ay Ag Ag Ay Ay g Ay Ay Py Pg A Ry Ry A Al A Ay Ay R Ay G e R P B
u. 14 u, u 1 15_15 Uag
3y <, A 5 = Uzg = = 2!
AmTITEY AmzaTEY Am24761 Am2IT5) AmTITEY
03 0z 0y O & O3 0 0y Oy 9y 0z 0y O 8| = 05 04 03 0z 0y O 05 04 03 Gy Oy Oy
a1 1]z 3] ala0] 1)1z 13] a[s0] 1] 1z 13] 6] 5] 2] 3] 2] 1 6] 5] 4] 3] 2] ¢
4 BRyy
BRyg
By
bRy
BR;
BAg
By
By
BRy
Bz
BAy
BR,
1 o
B AERE ANEE 7| a]]] 2] 5] o] 5] 1] 1s|]
= Dy Dy Dy Dy 7 | D3 0 0y By o L 24| D3 Dy Oy Dy Ry Ry My a% 23 oF, OF =
A n Cnia n 27
3 £E 1
18 LU = i 5
= uy =1 E ug ORy or, Uzl om-mests
pur ezt 2 eue iz Ry ’: OR; AmZSIIA Ty f— oR-TESTZ | TEST INRUT FOR
- 1; 5, : 5 oRy :a |: oRy i < OR-TEST 1 16-WAY BRANCH
o £ o L] ORg oty Ty f—— oR-TESTO
oy A =i} o S 15| 7ERG B L
¥3 Y3 ¥y Yo Yy ¥ ¥y ¥y [P P P
1518 [13] 12 21]20 18] 18 R E
L
- Rog [M2q |fz3 | Pz
"l n 5 2z
9 0 0 9
3 Uzz
cF
An A0 Ag Ag Ay Py By Ay BaiAgiAg Am2818
MICROPROGRAM MEMORY DD DO
]llll!!|||||1|||||||||I ||||ll||||Il|l||r||rr|]|r1'|n|||||| Bl] 4] 1]
Mpo Mug Mgy Myy Mgy Myg o Mgz My Moy Mgy Mgy oMy My My M, my Mas Maq Myy Mgz
Maz—Mox
Mo =My
Mg=Myy
[1
1 1
My Mg My My My g M oM, My
ld Bl] 1] e =
7 S D e L G 7 27 7 Dyt Dy Dy Dy
—Of ce Ugg —0f oe O Uz
<l Am2918 L] Amzale L 1o Amiz318
D10y Oy B Yy Y3 ¥q Yy Oz 0y Oy 89 ¥3 Y2 ¥3 ¥y Q3 Oy @y Oy ¥3 ¥; ¥y Yo
DEEEE ml Ol DREEEE 3] DR EEEEEE!
Rygfyg Ry Ry | BRy | BRy Ry Ry Ag Ay | BRy | BRy Ry Ry Ry Ry | BRy [By
BRyy BAg BR; BRg BAy BR
1 + BRy-BR,,

High Performance Computer Control Unit with Am2909/2911.

MPA-

—

MULTIPLEXER SELECT
Rzo Ryg Ryg Ry7 | SELECT
0 00 o | TESTO
0= 0 0 1 | TEST1
00 1 o | TEST2
L] - v,
1 1 1 1 TEST 15 ce
CLOCK 7 r— B_l
CcP CLR
TEST 15 1
NEXT ADDRESS CONTROL — =
D
Ris Ry4y Rz Ryp | FUNCTION TEST 13 13 D: * 15
XX S B NEXT ::::f :: 1 e :
D. =i
INSTRUCTION = T D: Am2922 PQ'C- 5_::
TESTS 19 Dy = 6_ -
TEST 8 1 4
Dg Af— 17
CONTROL VALUE o e
OE
Rq1-Rq FUNCTION =
XX ==X VALUE > <
H s o5
3 e o
RE ME
- POLARITY CONTROL Il m“—|
Ris OUTPUT TEST 7 1),
o | COMPLEMENT el 124 pg
TEST TEST S 13 Ds ¥ 15 -
1 | TRUE TEST Bl o, 18
TEST 3 17 us 9 Ria
D3 amzgzz POL —— 16 =
TEST 2 18 Ds ¢ -‘—5--—19 H13
TEST 1 19 Dy B 'ﬁ__m 12
MACHINE RESKE) il P e s 12 | |7 |s |2
INSTRUCTION REGISTER J_ T T
16} = =
Ry; | FUNCTION = mo| % i >3 s
REE oL AmT45174 G
0 :-.!(c);:g 70 Rzq Dy Dy Dz Dy Dg
1
3 i 5 110 I|3 ln |a 14 |a
ol @ @ Qs 5 14 13 12
L— cp 2 _l_l
JUMP ADDRESS :L 2l o Am74S175
BR,;-BR, FUNCTION B3 P2
13 12
XXX - - - XXX | JUMP ACDRESS zlo J‘

OTHER =

Figure 20. Co

16-BIT DATA BUS

uter Control Unit with Am2910.

Dis D4 Dy3 Dy D4y Dyg Dy Dy Dy Dg Ds Dy D3 D Dy Dy
18 17 14 13 8 7 4 18 17 14 13 8 7 4 3
80 7D 6D 5D 4D 3D 20 1D 8D 70 6D 5D 4D 3D 20 1D
3 i 11 1] vz 11
E Am25LS377 oR = Am25LS377 GP
80 70 50 50 40 30 20 10 80 70 60 5Q 40 30 20 1Q
19 [16 [15 [12 [9 [s [5 [2 19 [16 |15 12|9 6 |s]2
5
1 OTHER
(CLOCK
il |2 |2ia |7 e |s I1$t23a765 ||5|2:4?5s
A7 Ag Ag Ay A3 Az Ay Ay A7 Ag As Ay A3 Ay Ay A Az A A
us us us
Am2a761 3 b Am29761 7 Am2a761 5
s [+
0; 0, 0; & 03105 .04 Ty a5 __L Oy Oz O; Tp
o [[11 [z ln: = o [0 [11 [12 li:! 2 s 10 [11 [o
BRyq)
BRyg
BRg
BAg
BR;
BRg
BRs]
BR;
BR;
BA,
BR,
BRy
= 2
27 |25 |23 | = 19 7 |4 |2 40 |38 |35 |34 cc
Dyy Dyp Dg Dy D; Dg D5 Dy Dy Dz Dy Dg 32
1 i]
qcc
__ |15
11, ALD
1% us
Am2910 MICROPROGRAM CONTROLLER _ |2 ae
1 OE oF
{1
— —:las
{CcEN _ P
PL Yo NMipiab Ysi Ny Yo Y5 X4 Y3 Yoo i Mg
) Iza rs 124 22 |zu THE [1 |34; 37 |35 ’3:
Mig Mg Mg Mg My Mg Mg Mg My M My M,
MICROPROGRAM MEMORY
fllllllll‘lIfllll‘f!llll"TITlrITlllll|||||I|||||||I|||F||||||||
60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0
2-21
0-11
cLocK
£ AY rs Y ' AY
1 10 5 8 7 & 5 4 3 2 1 0
Ls 112 |_4 l1 [15 ||z Ja ‘1 |1s J12 |4 J‘
Dy D, D, Dy Dy 0, Dy Dy Dy D, D, Dy
s) A [RE 5 = 3
U1t 1 w12 U3
1oe cp S T cp L Ge cp
Am2918 Amz2918 Amz918
Q5805 07 Og.¥e Ya itiada (O S Vi r o P EONE, A 7 (o PR e A e
|14 ln |s lz 113]m |e la ||4 |1i |s |2 f13 |w [s fa ||4 In I5 Iz ||:3 ||u 1& |3
Ryy Rjp Rg Rg BRyy BRyg BRg R; Rg Rs Ry BR; BRg BRs BRg Ry Ry Ry Ry BRy BR, BR, BA,
\ l 7\ r AY l AN S \ I AN S
BR-BR;
MPR-505

Am25LS153
3
1C3
s,
- 10y
L2 (S
o 4
= us
— 2cs
—]zc; 2y
—] zc,
N P
— =
- A B
o BT EWP L, - ;
o Qg f—
uio 1z
= 8 Q¢ f—
c g "
i £ agl—
+8V B 2 g, 14
3 15 CHARACTER-RATE CLOCK
2 faw
16
L] e L
wo s Voo
LO7E CH _‘17- Am2sLSZ)
sl z
! n vy |18
18 4 +BV
sL oYg l—
15
L oy |2
19 oYy o AN
4l 14
1 Dy AR
+5V At (5 e s
3ls oY, A
2 &
H oYy A
Gy 7
E DYy A
.| o) L
vee g0 a |8
[
DOT-RATE CLOCK 12 L
05C N [O -
HOST ACCESS
(FIGURE A2)
s 1T 18
i Ey E4
Dg Ag
23
Dg Ay =
1
0, & il =
(FIGURE A2) | Dy L ' Oy
1
0, 32X as o |
A uiz I
4] As umi O2
D LH frogstociberry 1
5la,
24
LA Y [Ve
l T 1 8
Frisme.
10 T 0 Bt
o| ERT Er‘c; 1 "_} _Lﬂ =
312 uis 2 =
¢ ag |—
S s e B
“ 14
Ha 2 o
15
= E L=
1 16
+5v =—AAA—1 uB [vee
8
e cr
9 !z =
1/2 Am25LE240
2 18 RESET
FESET 18y e MOST ACCESS
LI PP e =
G 1Ay Bl
s T4 AmZ5L52521
e = 18
By
— ul4 o
£
+ 15] g,
1] g,
12
‘i:“"fcc = By
1 B
ia Al £ (o
Ay L 5 =
9 = (SEE FIGURE AZ) — & o
Ay e Az ur ——
T s
oy b e
(FIGURE AZ) { Ay ———
Ay e
A
A ————
R
B

Am25L8IT4

Lkl 1l

SEE FIGURE AZ o
FOR INPUTS Y3 |—Mby
AND CLOCK e e B
2 £
v | E o,
I’n 2 MDDy
Ucc -
10
OF
=]‘
VERTICAL
AMIITTS BLANKING
[
Mag — A o |18 wag 5] a,
5 5]
2 1 5 : un,__‘.a, as [1¢ wa; 5| oy
o BER mag —21 a, o 112 o
e 1 =]
12 m, 24, 12 3
2y 5 5 5 Qy Mag; —3d A
2] 5
| LSS MAg——1Ay a [0 ma, —2 &
3 a
MAY ——
o L 4 = A3 w g |0 MAy —da, W2
ma, 21
a |2y o ay May 2 o,
W] LA e 9 L e
Mag —21 Ay 19
= Voo = 2 Mig —— Ag
'oc =—1
: 1 % 1 ot e e
i & & ce g B cp
L o E 1 2 1 2 4
T = = 18 17 |18 1s| _L el =
: HORIZONTAL
BLANKING
Wi +5V
-
Am2611
7 18
o
] =
Ll FE
21 7En 2 LA
i b
1
R vz P ay il [L7 LS E ¥, vy L=
1 1 =) -
£ cp e
18] — 13 6] — 12 a3
B ow M [T ag Bl us P2 oa
20 0 0
— Pur PUP PuP
= 1 -,
L] RE Yo 2 ag | AE Yo F2—a, L] 3 Yo 12 a,
mo; — b, mo; —2J o, A =Ll i 4
5 3
moy, —5] o, mo; —2 o, L
& 2
Mo: — 2] o, 12— Voo D, —21 Dy 12 v L] [12 v
wo, — oy .'__L Moy — 0y "__.L —o, J;._]_
4 8
s
n
0 vioeo

“igure 24. CRT Controller.

MPR-506

i) & o S \: e o, e
i ! i ?...n.rd.x.,mw» e : o :
S L g Ly i i S 0 : : e o e esbren
3 s = e - i o . o
P g 9 i
. ¥ X o &)
et o e e o oo
L Sy - I} LA i . : i e
et s - et = ;
5 s g S :
e 5 d . - 3
; oy g sy - s
R I e o e o
: T
i,
- :

HOST ACCESS FIGURE 24

A
Ag

As LFIGURE 24

uz0
AmS114
Ag Vo
103

uz1

1
A7 Amgtig =

10,
voy —

(SEE FIGURE 24) =

Ay

1 9
Ay —— 4 Ay
o uz |

Amg114

XACK P1-23

Dy

Dy
Ds

FIGURE 24

0y
by
oy

Dy

e
@

By ——q 04

0y |—— SEE FIGURE 24
= = FOR QUTPUTS
T [AND ENABLE

By

12 Am2SLE3T4

Dy [——

T Controller. MPR-507

ADVANCED

MICRO

DEVICES, INC.

901 Thompson Place

Sunnyvale

California 94086

(408) 732-2400
TWX: 910-339-928C.

TELEX: 34-6306

TOLL FREE

(800) 538-8450

5-78

