MET[C

UMIT

i

THE MACHIVE
s o R
TROCRAM-CONTROL AT, Tk
| NTERZUPT MDM&&RM?S’ f

| %
I8 THE COVTROLLIVES /w;,
g THOSE awﬂ; cms

M!O‘/ /

FACH woep ﬁ;m#
WUCROMNSTRUCTIOM mzym

SELECTED FROM)
’Eqéﬁfwfwﬂ?,ﬂEJ%)
N AREBISTER. FROMTHERE, :
COVTROL AL THE HSTENSs \
“TARTS, INCLUDING THE SELECTION
OF HENEXT MICROINSTRUCTION

0 BE BXELYTED,
o .| GENERALIZED
FI6URE T

CONTP
- ALHI TECTURE.
TN, g

Build A Microcomputer

Chapter |
Computer Architecture

Advanced
Micro Devices

S n

Copyright © 1978 by Advanced Micro Devices, Inc. .

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely
embodied in an Advanced Micro Devices' product.

AM-PUB073-1

C

PREFACE

In this introductory Chapter we intend to:

1). develop a common terminology for future chapters.

2). introduce several stored-program-computer design topics.

3). define some of the computer architect's problems (which
will be solved in the subsequent chapters).

In order to achieve these goals, we will start with computer
basics. It should be stressed that approaches and solutions
can be chosen which are different from the ones described in
this and the subsequent chapters. However, the general ideas
described will be appropriate to gain familiarity with the micro-
programmable bit-slice devices in order to use them in any
design configuration.

BACK TO THE BASICS. ..

A STORED-PROGRAM-COMPUTER is defined as a machine
capable of manipulating data according to predefined rules
(instructions), where the program (collection of instructions)
and data are stored in its memory (Fig. 1). Without some
means of communication with the external world, the program
and the data cannot be loaded into the memory nor can the
results be read out. Therefore, an input/output device is re-
quired as shown in Fig. 2.

CENTRAL
PROCESSIN
- — I

(CPU)

MPR-439

Figure 1. Basic Definition of a Stored-Program-Computer.

CcPU MEMORY

INPUT/QUTPUT
(Vo)

EXTERMNAL WORLD

MPR-440

Figure 2. I/O Added to the Basic Stored-Program
Computer.

The memory is usually organized in words, each containing N
bits of information. A unique address is allocated for each
word which defines its position relative to other words. The
Central Processor Unit (CPU) usually reads or writes one
word at a time by addressing the memory and then when the
memory is ready, reading the contents of the word or writing
new contents into that word. To perform this operation, two
registers are usually used: The Memory Address Register
(MAR), which contains the address and the Memory Data
Register (MDR) which contains the data (Fig. 3).

CPU MEMORY

EXTERMAL WORLD MPR-441

Figure 3. MAR and MDR Depicted for a
Stored-Program Computer.

Since accessing a memory (reading from it or writing into it) is
usually a relatively slow procedure, it is advantageous to have
a few memory locations inside the CPU which can be read
from or written into very fast. These locations are usually
called Accumulators or Working Registers. Having these fast
access registers inside the CPU (Fig. 4) enables many opera-
tions to be carried out without referring to the memory
(through the MAR and the MDR) and therefore these opera-
tions are executed faster.

The unit which actually performs the data manipulation is
called the Arithmetic & Logic Unit (ALU). It has two inputs for
operands and one output for the result. It usually operates on
all the bits of a word in parallel. The ALU can perform all or
part of the following operations:

Arithmetic Logical
Add OR
Complement AND
Subtract XOR
Increment NAND
Decrement NOR
XNOR
Complement

In some architectures, one of the operands must always be in
a special register (accumulator) and the result of the ALU op-
eration is always transferred to this register. In a more general
CPU, any two of the internal registers can contain the
operands and the result of the ALU operation can be trans-
ferred to any one of them.

Another very useful feature of a CPU is the ability to shift the
contents of a register or the output of the ALU one or more
bits in either direction as shown in Fig. 5.

INTERMNAL REGISTERS

CPU

MPR-442

Figure 4. CPU with Internal High Speed Registers.

REGISTER FILE

e
SOURCE AND
DESTINATION
MULTIPLEXER

SHT PCU :>

e

nE

CENTRAL PROCESSING UNIT

MPR-443

Figure 5. ALU and Shifter Added to the CPU Design.

We now have the elements to do any data manipulation re-
quired but we still need a unit which can properly set the MAR
in order to find the next instruction of the program in the
memory and to find its associated data. This unit is called the
Program Control Unit (PCU) and its role is to load the MAR
with the correct address in order to find the next instruction or
data item or to point to a memory location where a data word
should be written.

Often, the program steps (instructions, data) are written in the
memory in consecutive locations, starting at address zero or
at any other predefined address. The PCU can simply be in-
cremented after each memory access thereby pointing to the
address of the next instruction or data item. This counter-type
PCU has very little flexibility. Sometimes we wish to change
the “normal” flow of the instructions, particularly if we want to
enable our computer to “make decisions” according to condi-
tions prevailing at the current execution point. For example,
we may want to execute one of two different sequences of in-
structions depending upon the result of the last operation per-
formed. This is accomplished by loading the MAR with a new
value (the address of the next instruction to be executed)
rather than incrementing it. This operation is called a
BRANCH or JUMP and can be unconditional (which allows
execution of a non-contiguous string of instructions) or condi-
tional (depending, for example, on whether the last opera-
tion's result was zero or not, was negative or positive, true or
false, etc.).

Even more flexibility can be achieved by using a stack (a
group of temporary internal or external memory locations) to
store vital data. A stack pointer is used to address the mem-
ory location currently at the top of the stack. Indirect and rela-
tive addressing and other sophisticated addressing modes (all
of which can be handled by the PCU) will be discussed later.
Meanwhile, Fig. 5 shows the PCU as a part of the CPU.

Executing an instruction in our computer now requires the
following steps:

a). The PCU loads the address of the next instruction to the
MAR and signals to the memory that a Read is re-
quested. Incidentally, the PCU may be as simple as a
Program Counter equal to the address width. The mem-
ory loads the MDR with the contents of the location ad-
dressed.

b). The CPU decodes the instruction: i.e., (assuming
operands are in internal registers) selects the proper reg-
isters to feed the ALU, selects the proper function to be
performed by the ALU, sets up the shifter to displace the
result, if required, and selects the register in which the
result should be stored.

c). The ALU performs the function desired.

d). The result is loaded into the destination register.

e). The result is also examined to determine whether a
BRANCH is to be performed.

f). The PCU calculates the address of the next instruction,
(usually called a “FETCH").

This procedure becomes more complicated if the operands
are not stored in the internal registers or if the result is not to
be stored in one of them. Let's take an example instruction
using relative addressing:

"“Take the first operand from the location specified by the
sum of the word after this instruction (immediate) and the
contents of register R1; take the second operand from
the location specified by the sum of the second word
after this instruction and the contents of R2; add the two
operands and place the result in the location specified by
the sum of the third word after this instruction and the
contents of register R3. Then execute the instruction lo-
cated at the address, which is the sum of the fourth word
after this instruction and the contents of register R4 if
there is a carry resulting from the addition. Otherwise
continue sequentially”.

The steps required to execute this instruction are as follows:

a). The PCU loads the address of the next instruction to the
MAR, signalling to the memory that a Read is requested.
The memory loads the MDR with the contents of the loca-
tion addressed.

b). The CPU decodes the instruction, i.e., initiates the follow-
ing steps.

c). The PCU is incremented and the next word is read from
the memory.

d). Register R1 and the MDR are selected as source regis-
ters, MAR is the destination register.

e). The ALU performs “ADD" and the result is placed in the
MAR.

f). The first operand is fetched from the memory and placed,
for example, in R5.

g). The PCU is incremented and the next word is read from
the memory.

h). Register R2 and the MDR are selected again as source
registers and MAR as the destination.

e €

i). The ALU performs “ADD” and the result is placed in
MAR.

j). The second operand is fetched from the memory and is
placed, for example, in R6.

k). The PCU is incremented, the next word is read from the
memory.

I). Register R3 and the MDR are selected as source regis-
ters, the MAR as destination.

m). The ALU performs “ADD"” and the result is placed in the
MAR, which now points to the location where the sum of
the operands should be stored.

n). Registers R5 and RE are selected as sources (they con-
tain the operands), MDR is now the destination.

0.) The ALU performs “ADD" and the result is placed in
MDR.

p). A memory write cycle takes place and the contents of the
MDR is stored at the desired address.

q). The carry is examined to determine the next step to be
performed. Assume there is no carry.

r). The PCU is incremented twice (in order to skip the fifth
word of the present instruction). It now points to the ad-
dress of the next instruction.

As can be seen, 18 steps were used to perform a single ad-
dition using this complex relative addressing scheme. Obvi-
ously, our CPU needs some kind of “coordinator” which can:

1). Decode an instruction fetched from the memory.

2). Initiate the proper cycle of steps to be performed.

3). Set up the various controls for each step.

4). Execute the steps in an orderly sequence.

5). Make decisions according to the state of various signals
(conditions).

We will call this coordinator the Computer Control Unit (CCU)
and it is depicted in Fig. 6. Our CPU is now complete (more
or less) and we will go into more detail later.

THE MEMORY

Let's now discuss the memory. The information stored in the
memory is organized in words, where each word consists of N
bits. N may be as small as 8 for very simple processors or as
large as 64 in more powerful machines. The most common
memory width for minicomputers is 16 bits. The number N is
called the width of the memory and the number of bits in the
MDR is obviously also N; equal to the width of the memory.

The depth of a memory is the number of words it contains.
With a MAR having k bits, 2K consecutive memory locations
can be addressed. The addresses start from zero and range
through 2k,

The read access time of a memory directly accessible by the
CPU is the time needed from stable address at the memory
until the data is properly stored in the MDR. This access time
depends on the type of memory used and can be as low as a
few tens of nanoseconds and as large as several micro-
seconds. Using high speed memory improves the perfor-
mance of the computer as less time is wasted waiting for the
memory to respond. In general, faster memories are costly,
take more PC board area and use more power which results
in more heat. A 32 bit wide, 2K (2048) word memory with 50
nanosecond access time may need 10 amps from the +5V
power supply and may require a board area of 10" x 6". Yet
this is a very small memory space.

It is usually not justified to have very large high-speed
memories. Not all the programs and associated data need to
reside in this memory at once. We may have the current pro-
gram (or only a part of it) in the memory while other programs
or data files can reside elsewhere and be brought into mem-
ory during the appropriate part of the program when needed.

REGISTER FILE
" :
S (e
v N v : \
A N
w
c
s
__.J\ a
SHIFT |
-3
z
o
o
m
w
2
z
B
o
=z
=
INSTRUCTION =)
DECODE
CONDITIONS CONTROL
— . M) L
.| computern | ____ V] & '
CONTROL
S| UNIT T
| (ccu) =
— I
TIMING Feu

CENTRAL PROCESSING UNIT (CPU)

MPR-444

Figure 6. A Computer Control Unit (CCU) Included in a CPU.

3

This “elsewhere” may be a magnetic tape, cassette, disk,
diskette, etc. and we will call it Bulk Memory. The distinctive
characteristics of Bulk Memory are:

1). wvery large capacity

2). non-volatile (retains the information when not in use)

3). not randomly accessible

4). long access time

5). inexpensive (per bit)

Usually, Bulk Memory devices are serially accessible, i.e., the
access time for the first word is large, but then consecutive
words can be accessed relatively fast.

In a later chapter the most efficient process of communication
between the main and the bulk memory, called the Direct
Memory Access (DMA), will be discussed in detail.

THE EXTERNAL WORLD

In any useful machine, some means of communicating with
the external word is needed. It may be a keyboard, a CRT, a
card reader, a paper tape punch or, in a process controller,
reading sensors or positioning actuators. The common de-
nominator of almost all of the input/output devices is that they
are much slower than the CPU and therefore a timing prob-
lem arises; the CPU must know when the |/O device is ready
for data transfer. Usually, a signal is sent by the device to the
CPU in order to draw its attention. The CPU now can do one
of two things:

1). Test this signal periodically and when it is present, jump
to a program which handles the data transfer. This type
of operation is called “Polling”. This technique has two

major drawbacks: First, appreciable computer time is
spent performing these periodic tests where most of them
will fail (no “Ready” signal present). Second, the recogni-
tion by the computer CPU of the appearance of a signal
is delayed until the CPU arrives at this device in its pol-
ling sequence.

Imagine what will happen if there are a large number of
/O devices. Long latency times (delays) will occur if
many /O devices are busy simultaneously.

2). Include some hardware in the CPU which can sense the
presence of a "Ready” signal and interrupt the normal
flow of the instructions and force the computer to “Jump”
to the I/O service program whenever there is a request. It
can even send the CPU to different programs according
to the /O device whose “Ready” flag was detected and
even establish priority among the different devices if more
than one device would like to have the CPU’s attention at
the same time. Moreover, under program control, this cir-
cuitry can ignore some or all of the signals if the com-
puter CPU must not be interrupted at that time. Obviously
by paying the price of very little hardware, we gain
enormously in computer performance. We will call this
hardware the “Interrupt Controller” and will discuss it
thoroughly later.

Our computer is now depicted in Fig. 7. We have included the
ALU, the internal register file and the shift circuit in one block,
which we call the “Arithmetic Processor Unit.”

In the following pages and in the subsequent chapters, we will
deal in more detail with each area of the machine.

COMPUTER

CENTRAL PROCESSING UNIT (CPU)

CONTROL
] UNIT
(ccu) | |

:) g M DATA
R

REGISTER FILE

TIMING

SHIFT

ARITHMETIC

MEMORY

PROCESSOR UNIT (APU)

PROGRAM " l

CONTROL n ADORESS
UNIT a
(PCU) _I

INTERRUPT
CONTROLLER

DMA
CONTROLLER

1 U i —

EXTERNAL WORLD
MPR-445

Figure 7. The Stored-Program-Computer with DMA and Interrupt Control Added.
4

PRl

€

A WORD ABOUT THE INSTRUCTION SET

The internal architecture of the CPU depends to some extent
on the instruction set the computer is to execute. If the in-
struction set is large, some of the instructions usually are
more complicated and the computer is more powerful, faster
and more efficient. On the other hand, the internal circuitry is
also more complicated. Some examples of these tradeoffs are
as follows.

ALU Processing Capability:

Although with three basic functions (add, complement, and
OR/AND) all the arithmetic and logic operations can be per-
formed, most processors are built to perform subtract, NAND,
XOR, etc. This is perhaps the most outstanding example of
how performance and speed can be gained with little penalty
on the complexity of the machine. With the added features an
XOR operation can be performed in one instruction instead
of 5.

Data Movement:

Let us assume 4 different computers whose data movement
capabilities are described below:

Machine A). A word can be read from the memory and
loaded into Register A only. The contents of Register A can
be written into the memory, or can be moved into any other
register. The contents of any register can be copied into
Register A.

Machine B). The contents of any register can be copied into
any other register or it can be written into the memory. A word
read from the memory can be loaded into any register.

Machine C). As B above but with the added capability to read
from one location in memory, to write that word into another
location in memory.

Machine D). As C above and also the memory-to-memory
operation can be performed on consecutive addresses repeti-
tively. The number of word transfers (or upper and lower ad-
dress limits) are specified by the instruction.

Machine A has very limited data movement capability. In
order to perform an operation on two operands residing in the
memory, we have to:

1). Bring the first operand from the memory into Register A.
2). Copy it into another register.

3). Bring the second operand into Register A.

4). Perform the operation required (result in A).

5). Store the contents of Register A into the memory.

If consecutive operations are required with several partial re-
sults, the drawbacks of machine A become more annoying,
especially if the number of internal registers is small.

Moving a data block from one location in the memory to
another location can be performed by one instruction in com-
puter D, but requires the transfer of each word first to an in-
ternal register then to the new memory location in machines
A, B (two instructions for each word transferred).

Obviously the decoding, multiplexing and sequencing of the
computers grow in complexity as we proceed from machine A
to machine D. We trade the complexity of hardware versus
the software (programming), speed and performance.

Addressing:
The operands for an operation can be found in several ways:

e The operand is an explicit part of the instruction (Im-
mediate)

e The address of the operand is an explicit part of the in-
struction. (Direct)

e The address of the operand is in an internal register; the
register itself is specified by the instruction. (RR)

e The address of the operand is the sum of the contents of
an internal register (specified by the instruction) and a
number (called the displacement) which is an explicit part
of the instruction. (RX)

e The contents of an internal register are added to a
number found in an address specified by the instruction.
The sum is the address of the operand. (Indirect)

e The contents of an internal register are added to a
number which is an explicit part of the instruction. The
sum points to the location where the address of the
operand is written. (Indirect)

e The contents of an internal register are added to a
number which can be found at the location explicitly
specified by the instruction. The sum thus formed points to
a location where the address of the operand is written.

e FEic.

Many other schemes can be formed by combining the above
operations or by chaining them. In every case an “Effective
Address” must be found by calculations and/or memory refer-
ences. Again, we can gain performance by using more
sophisticated addressing schemes but we will pay for it by
adding complexity to our machine, especially in its control por-
tion.

TIMING, SEQUENCING, CONTROLLING

In the previous paragraphs we have shown that we can gain
performance in our computer by having a more complicated
instruction set but more complex hardware is required, usually
in the CCU. We have also shown an example for an “Add”
operation which required 18 precisely controlled steps. Even if
we assume that some of them can be performed simultane-
ously, we will need a multiphase clock to control these steps
— something like that shown in Fig. 8. We can now load an
instruction register at the beginning of an instruction with the
first word of the instruction (the OP CODE) as is shown in
Fig. 9. Using the outputs of the Instruction Register (IRq to
IR,,.1), the different phases of the clock and the various condi-
tion inputs to the CCU, we can now try to write the logical
equations which should satisfy all of the steps of all the in-
structions of our instruction set. Then use Karnough maps or
other techniques to reduce these equations and finally realize
them using AND, OR, INVERT gates and Flip Flops. Simple,
isn't it? Imagine the complexity of a sophisticated computer
and the debugging process it needs!

The question posed immediately is: Isn't there a more or-
ganized and more easily understandable way to do that? Or,
perhaps, can we have some processor do the job for us?
Can't we have some kind of “micro-machine” which can take
care of all the timing, sequencing and controlling jobs of our
computer — a computer inside the computer? With the advent
of the Am2900 family — new Bipolar LSI devices — the an-
swer is: Yes, we can!

@

@2

@3

g

@5

g

-

-

MPR-446

Figure 8. An 8-Phase Clock.

[p—
[F—
w -1 F
N G
IPp.g ——]
Rp.q ——rof

Iz
L3

FROM
MEMORY

—

MFR-447

Figure 9. The Instruction Register Bits.

DATA BUS

-

CONDITION
TEST
MuX

1

INSTRUCTION REGISTER

| -

I

INSTRUCTION DECODE

CLOCK
e

CONDITIONAL
CONTROL LINES

Am2910
SEQUENCER

l

MICROPROGRAM
MEMORY

I

PIPELINE
REGISTER

MPR-448

EEERE

iy

CONTROL LINES FOR
ALL THE CIRCUITS
OF THE COMPUTER

Figure 10. The Micromachine.

THE MICRO-MACHINE

What we need is essentially a machine which can execute a
number of well defined sequences. But, remember that this is
exactly the purpose of a stored program computer. The only
difference between our micro-machine and a general purpose
computer is that in the general purpose computer the program
to be executed is changed from task to task, while in our
micro-machine it is fixed. This allows the use of PROM for its
memory instead of the RAM needed in the general purpose
(GP) computer. Our Computer Control Unit (CCU) using this
micro-machine may now look like Figure 10.

Basically, a microprogrammed machine is one in which a
coherent sequence of microinstructions is used to execute
various commands required by the machine. If the machine is
a computer, each sequence of microinstructions can be made
to execute a machine instruction. All of the little elemental
tasks performed by the machine in executing the machine in-
struction are called microinstructions. The storage area for
these microinstructions is usually called the microprogram
memory.

A microinstruction usually has two primary parts. These are:
(1) the definition and control of all elemental micro-operations
to be carried out and (2) the definition and control of the ad-
dress of the next microinstruction to be executed.

The definition of the various micro-operations to be carried out
usually includes such things as ALU source operand selec-
tion, ALU function, ALU destination, carry control, shift control,
interrupt control, data-in and data-out control, and so forth.
The definition of the next microinstruction function usually in-
cludes identifying the source selection of the next micro-
instruction address and, in some cases, supplying the actual
value of that microinstruction address.

Microprogrammed machines are usually distinguished from
non-microprogrammed machines in the following manner.
Older, non-microprogrammed machines implemented the con-
trol function by using combinations of gates and flip-flops
connected in a somewhat random fashion in order to generate
the required timing and control signals for the machine. Mi-
croprogrammed machines, on the other hand, are normally

considered highly ordered and more organized with regard to
the control function field. In its simplest definition, a micro-
program control unit consists of the microprogram memory
and the structure required to determine the address of the
next microinstruction.

The OP-CODE (type of instruction to be executed by the
computer) is loaded into the Instruction Register and the In-
struction Decoder decodes it. Actually, it generates the micro-
address where the first step of the execution sequence for
that instruction resides in the microprogram memory. The
Am2910 sequencer then generates the microaddress of the
next microinstruction. The microprogram data supplies the
control signals we need to control all the parts of the com-

INITIALIZATION

FETCH MACHINE
INSTRUCTION

DECODE INSTRUCTION

NEED
OPERAND?

EXECUTE
INSTRUCTION

M |

OPERATE

FETCH OPERAND

OPERAND?

EXECUTE

e o

MPR-449

Figure 11. Computer Control Function Flow Diagram.

puter (and there are a lot of them), including the sequencer
itself. When all the steps of a machine instruction are exe-
cuted, the microprogram will cause the reading (fetch) of the
next machine instruction from the computer main memory.
Typically, the Computer Control Unit is used to fetch instruc-
tions and decode them using a PROM for mapping the op
code to the initial address of the sequence of microinstruc-
tions used to execute this particular instruction. It will also
fetch all of the operands needed by the machine instruction
and deliver them to the ALU for processing. An example of
the flow of a typical Computer Control Unit is shown in Figure
11.

Assume the OP-CODE of the machine instruction that we
fetch is 8 bits wide. This allows us to execute a minimum of
256 different instructions. Assume also that an average of 6
steps are needed to execute these instructions. Even if sepa-
rate microprogram memory locations are used, a depth of this
microprogram memory is only 1-1/2K (K = 1024). But in that
case, the sequencer can almost be replaced by a simple
counter. Usually we would like to share some micro-routines
among different instructions. With very little effort, we can
shrink the depth of the microprogram memory of Figure 10 to
less than 1/2K. Of course the sequencer will be a little more
sophisticated; it will perform conditional Branch and micro-
subroutine CALL's; but we still don't need the complicated
addressing schemes for microprogram control as were de-
scribed earlier as a part of the machine instruction set.

On the other hand, the width of our microprogram memory
may be large — maybe 60 to 100 bits. This will depend on the
number of control lines needed in our computer. This is of no
great disadvantage since the price of PROM devices is drop-
ping constantly. In a future chapter we will discuss techniques
to reduce the depth and width of the microprogram memory to
save cost.

It is important to understand the distinction between machine
level instructions and microprogram instructions. Figure 12
shows a typical machine instruction for a 16 bit minicomputer
that has an 8-bit opcode to identify one of 256 instructions; a
4-bit source register specification to identify one of 16 source
registers and a 4-bit destination register specification to iden-
tify one of 16 destination registers. The microprogram instruc-
tion of Figure 12 may contain from 32 to 128 bits in a typical
design; or even more bits in a very fast, highly parallel mi-
crocoded machine. This microinstruction word usually will con-
tain fields for the ALU source operand, ALU function, ALU des-
tination, status load enable, shift multiplexer control, bus

ADDRESS INST Mux Lo A&B [SOURCE ALU DEST LOAD MUX

MPR-450
MACHINE LEVEL INSTRUCTION
DESTINATION SOURCE
QP CODE R1 e
15 7 413 o
MICROPROGRAM INSTRUCTION
BRANCH | Am2910 | CC IR Am2803 | Am2903 | Am2903 [Am2803 | STATUS | SHIFT

ETC

! 32 TO 128 BITS |

|

The machine instruction is 16-bits and consists of an op code, source register and destination register specifica-
tion. The microprogram instruction defines all the elemental signals to control the various pieces of the machine.

Figure 12.

cycle control, etc. These fields are used to control the various
devices within the machine so that its execution is as desired
on each clock cycle. This is more straightforward than using
combinatorial logic and yields a more organized design.

Let us now compare the depth-over-width (d/w) ratio of the
computer's main memory to that of our microprogram mem-
ory.

In the Am9080A type microprocessor, the data field is 8 bits
and the address field is 16 bits, allowing direct addressing of
64K locations. The ratio d/w is 8K. In some minicomputers,
the data width is 16-32 bits and the addressing capability is
64-128K. The d/w ratio is about the same. In larger computers
with 32-64 bit data width, we find 256-512K deep memories or
even deeper ones. The d/w ratio again is 8K at least.

On the other hand, the d/w ratio in microprogram memories is
seldom greater than a few tens. Even if we assume that it is
2K deep and only 64 bits wide, we arrive at a d/w ratio of only
32; usually it will be around 10. It is much easier to control a
machine with a d/w ratio of 10 to 20 than to control one with
diw = 8K.

ONE MORE WORD

We have suggested a replacement of the “random logic"”
realization of the CCU by a micro-machine. We call this a
“Microprogrammed Architecture”. Perhaps the biggest advan-
tage of this type of architecture is the ease of structuring the
control sequence. We allocate a bit or a group of bits in the
microprogram memory to control a certain function (e.g.: ALU
source register selection, ALU function, ALU destination selec-
tion, condition selection, next address calculation selection,
MDR destination selection, MAR source selection, etc., etc.)
and for each microstep we write the appropriate state for
these bits (LOW-HIGH) into this memory field. Later we will
see that automated and sophisticated tools are avail-
able to perform this microprogram writing. One such tool is
AMDASM™ as available on System 29. But, this is not the only
advantage of the microprogrammed architecture.

As nobody is perfect, some “bugs” may inadvertently slip into
the design. In a random logic architecture, we will have to re-
design and usually rebuild the whole computer. On the other
hand, in a microprogrammed machine it is usually sufficient to
change a couple of bits in the microprogram to rectify the
problem. This is even easier if a RAM instead of a PROM is
used during the development and debugging phases. Of
course, we must be able to load this memory with the micro-
program by some external means. Again, a powerful tool is
available: AMD’s System/29™.

Finally, let's face the reality: The marketing guys usually
change their requirements (i.e., the instruction set) when you
are 80% through your logic design. Now you have to start
over from scratch. Not so! Change some microcode, perhaps
very little hardware too and here you are! It is even more
convenient when only additions to the existing instruction set
are considered. Just add a few lines to your microprogram to
comply with those new ideas! A mere few minutes using Sys-
tem 29 — That's flexibility! Incidentally, don't tell the marketing
guys how easy it is or you will NEVER get the product out!!

SUMMARY

The block diagram of Figure 13 shows a typical 16-bit
minicomputer architecture. Also identified on this block dia-
gram are various Am2900 family elements that might be used
in each of these blocks. Such a design might use either
4-Am2901A’s or 4-Am2903's for the data path ALU. An
Am2910 could be used as the microprogram sequencer for
control of up to 4K words of microprogram memory. Also
shown on the block diagram are the Am9130 and Am9140
MOS Static RAM's which are potential candidates for use in
the computer's main memory.

The following chapters will discuss various blocks of Figure 13
in detail and give design examples for each section. Needless
to say, the design engineer can appropriately tailor any design
to meet his throughput requirements. Also, special algorithms
can be executed by adding the appropriate hardware and mi-
crocode to the blocks described.

Am2818

NEREER

Am2910 ATER1S; L
A AmEIZD Am2501A
,m INSTRUCTION WORKING Am280z
Am2830 REGISTER i REGISTERS :mms
Am29751 M2
1 COMPUTER CONTROL UNIT [nﬁ[rga!'gﬂc Am2521
Am2818
UNIT il
MICROINSTRUCTION REGISTER “"_"_""'—‘_’]
Am2530
Am2818
Am2820
Am2833
PROGRAM COUNTER
MEMORY ADDRESS
@ REGISTER
=
=]
<
=
o<
AM2925 S
Am2810
Am2022 NEXT
CLOCKS
Am29811A
A ADDRESS CONTROL
Am2820
| AmS114
Ame130
| Lot MEMORY AmB140
TEST @ BANK 1 Am1z4
CONDITIONS, Am2g14 ﬁ AmB147
Am2913 &
8
CONTROL PANEL INTERRUPT =
CONTROL — MEmORY
OTHER PROCESSOR UNIT

INTERRUPT REQUEST TO INTERFACE CONTROLLERS
AmZS0S/0E/0T1SATEATTA
MPR-451

Figure 13. A Generalized Computer Architecture.
8

AMDASM is a trademark of Advanced Micro Devices.
System 29 is a trademark of Advanced Micro Devices.

ADVANCED
MICRO

DEVICES, INC.

8901 Thompson Place
Sunnyvale
California 94086
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE

(800) 538-8450
3-78

e o

